<< Chapter < Page Chapter >> Page >
a ( t ) = d v ( t ) d t = A ω 2 cos ω t i ^ A ω 2 sin ω t j ^ .

From this equation we see that the acceleration vector has magnitude A ω 2 and is directed opposite the position vector, toward the origin, because a ( t ) = ω 2 r ( t ) .

Circular motion of a proton

A proton has speed 5 × 10 6 m/s and is moving in a circle in the xy plane of radius r = 0.175 m. What is its position in the xy plane at time t = 2.0 × 10 −7 s = 200 ns? At t = 0, the position of the proton is 0.175 m i ^ and it circles counterclockwise. Sketch the trajectory.

Solution

From the given data, the proton has period and angular frequency:

T = 2 π r v = 2 π ( 0.175 m ) 5.0 × 10 6 m / s = 2.20 × 10 −7 s
ω = 2 π T = 2 π 2.20 × 10 −7 s = 2.856 × 10 7 rad / s .

The position of the particle at t = 2.0 × 10 −7 s with A = 0.175 m is

r ( 2.0 × 10 −7 s ) = A cos ω ( 2.0 × 10 −7 s ) i ^ + A sin ω ( 2.0 × 10 −7 s ) j ^ m = 0.175 cos [ ( 2.856 × 10 7 rad / s ) ( 2.0 × 10 −7 s ) ] i ^ + 0.175 sin [ ( 2.856 × 10 7 rad / s ) ( 2.0 × 10 −7 s ) ] j ^ m = 0.175 cos ( 5.712 rad ) i ^ + 0.175 sin ( 5.712 rad ) j ^ = 0.147 i ^ 0.095 j ^ m .

From this result we see that the proton is located slightly below the x -axis. This is shown in [link] .

A graph of y position as a function of x position is shown. Both x and y are measured in meters and run from -0.2 to 0.2. A proton is moving in a counterclockwise circle centered on the origin is shown at 11 different times. At t = 0 s the particle is at x = 0.175 m and y = 0. At t = 200 nanoseconds, the particle is at a position given by vector 0.147 I hat minus 0.95 j hat meters.
Position vector of the proton at t = 2.0 × 10 −7 s = 200 ns . The trajectory of the proton is shown. The angle through which the proton travels along the circle is 5.712 rad, which a little less than one complete revolution.

Significance

We picked the initial position of the particle to be on the x- axis. This was completely arbitrary. If a different starting position were given, we would have a different final position at t = 200 ns.

Got questions? Get instant answers now!

Nonuniform circular motion

Circular motion does not have to be at a constant speed. A particle can travel in a circle and speed up or slow down, showing an acceleration in the direction of the motion.

In uniform circular motion, the particle executing circular motion has a constant speed and the circle is at a fixed radius. If the speed of the particle is changing as well, then we introduce an additional acceleration in the direction tangential to the circle. Such accelerations occur at a point on a top that is changing its spin rate, or any accelerating rotor. In Displacement and Velocity Vectors we showed that centripetal acceleration is the time rate of change of the direction of the velocity vector. If the speed of the particle is changing, then it has a tangential acceleration    that is the time rate of change of the magnitude of the velocity:

a T = d | v | d t .

The direction of tangential acceleration is tangent to the circle whereas the direction of centripetal acceleration is radially inward toward the center of the circle. Thus, a particle in circular motion with a tangential acceleration has a total acceleration    that is the vector sum of the centripetal and tangential accelerations:

a = a C + a T .

The acceleration vectors are shown in [link] . Note that the two acceleration vectors a C and a T are perpendicular to each other, with a C in the radial direction and a T in the tangential direction. The total acceleration a points at an angle between a C and a T .

The acceleration of a particle on a circle is shown along with its radial and tangential components. The centripetal acceleration a sub c points radially toward the center of the circle. The tangential acceleration a sub T is tangential to the circle at the particle’s position. The total acceleration is the vector sum of the tangential and centripetal accelerations, which are perpendicular.
The centripetal acceleration points toward the center of the circle. The tangential acceleration is tangential to the circle at the particle’s position. The total acceleration is the vector sum of the tangential and centripetal accelerations, which are perpendicular.

Questions & Answers

Can any one give me the definition for Bending moment plz...
Prema Reply
I need a question for moment
paul Reply
what is charge
Zarshad
An attribution of particle that we have thought about to explain certain things like Electomagnetism
Nikunj
please what is the formula instantaneous velocity in projectile motion
Isaiah Reply
A computer is reading from a CD-ROM that rotates at 780 revolutions per minute.What is the centripetal acceleration at a point that is 0.030m from the center of the disc?
Rapqueen Reply
change revolution per minute by multiplying from 2pie and devide by 60.and take r=.030 and use formula centripital acceleration =omega sqare r.
Kumar
OK thank you
Rapqueen
observation of body boulded
Anwer Reply
a gas is compressed to 1/10 0f its original volume.calculate the rise temperature if the original volume is 400k. gamma =1.4
Celine Reply
the specific heat of hydrogen at constant pressure and temperature is 14.16kj|k.if 0.8kg of hydrogen is heated from 55 degree Celsius to 80 degree Celsius of a constant pressure. find the external work done .
Celine
hi
shaik
hy
Prasanna
g
Ahmad
what is imaginary mass and how we express is
Yash Reply
what is imaginary mass how we express it
Yash
centre of mass is also called as imaginary mass
Lokmani
l'm from Algeria and fell these can help me
Khlil Reply
Many amusement parks have rides that make vertical loops like the one shown below. For safety, the cars are attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will supply the centripetal force. What other force acts and what is its direction if: (a) The car goes over the top at faster than this speed? (b) The car goes over the top at slower than this speed?
English Reply
how can I convert mile to meter per hour
Folorunsho Reply
1 mile * 1609m
Boon
hey can someone show me how to solve the - "Hanging from the ceiling over a baby bed ...." question
Shrushti Reply
i wanted to know the steps
Shrushti
sorry shrushti..
Rashid
which question please write it briefly
Asutosh
Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7 m/s2 .
Eloisa Reply
what is summit
Asutosh
highest point on earth
Ngeh
पृथवी को इसके अक्ष पर कितने कोणीय चाल से घूमाऐ कि भूमधय पे आदमी का भार इसके वासतविक भार से 3/5अधिक हो
Vasudev Reply
best
Murari
At a post office, a parcel that is a 20.0-kg box slides down a ramp inclined at 30.0° 30.0° with the horizontal. The coefficient of kinetic friction between the box and plane is 0.0300. (a) Find the acceleration of the box. (b) Find the velocity of the box as it reaches the end of the plane, if the length of the plane is 2 m and the box starts at rest.
Kaitlin Reply
As an IT student must I take physics seriously?
Akaare Reply
yh
Bernice
hii
Raja
IT came from physics and maths so I don't see why you wouldn't
Brad
conditions for pure rolling
Md
Practice Key Terms 4

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask