<< Chapter < Page Chapter >> Page >

Lifting a payload

How much energy is required to lift the 9000-kg Soyuz vehicle from Earth’s surface to the height of the ISS, 400 km above the surface?

Strategy

Use [link] to find the change in potential energy of the payload. That amount of work or energy must be supplied to lift the payload.

Solution

Paying attention to the fact that we start at Earth’s surface and end at 400 km above the surface, the change in U is

Δ U = U orbit U Earth = G M E m R E + 400 km ( G M E m R E ) .

We insert the values

m = 9000 kg, M E = 5.96 × 10 24 kg, R E = 6.37 × 10 6 m

and convert 400 km into 4.00 × 10 5 m . We find Δ U = 3.32 × 10 10 J . It is positive, indicating an increase in potential energy, as we would expect.

Significance

For perspective, consider that the average US household energy use in 2013 was 909 kWh per month. That is energy of

909 kWh × 1000 W/kW × 3600 s/h = 3.27 × 10 9 J per month.

So our result is an energy expenditure equivalent to 10 months. But this is just the energy needed to raise the payload 400 km. If we want the Soyuz to be in orbit so it can rendezvous with the ISS and not just fall back to Earth, it needs a lot of kinetic energy. As we see in the next section, that kinetic energy is about five times that of Δ U . In addition, far more energy is expended lifting the propulsion system itself. Space travel is not cheap.

Got questions? Get instant answers now!

Check Your Understanding Why not use the simpler expression Δ U = m g ( y 2 y 1 ) ? How significant would the error be? (Recall the previous result, in [link] , that the value g at 400 km above the Earth is 8.67 m/s 2 .)

The value of g drops by about 10% over this change in height. So Δ U = m g ( y 2 y 1 ) will give too large a value. If we use g = 9.80 m/s , then we get

Δ U = m g ( y 2 y 1 ) = 3.53 × 10 10 J

which is about 6% greater than that found with the correct method.

Got questions? Get instant answers now!

Conservation of energy

In Potential Energy and Conservation of Energy , we described how to apply conservation of energy for systems with conservative forces. We were able to solve many problems, particularly those involving gravity, more simply using conservation of energy. Those principles and problem-solving strategies apply equally well here. The only change is to place the new expression for potential energy into the conservation of energy equation, E = K 1 + U 1 = K 2 + U 2 .

1 2 m v 1 2 G M m r 1 = 1 2 m v 2 2 G M m r 2

Note that we use M , rather than M E , as a reminder that we are not restricted to problems involving Earth. However, we still assume that m < < M . (For problems in which this is not true, we need to include the kinetic energy of both masses and use conservation of momentum to relate the velocities to each other. But the principle remains the same.)

Escape velocity

Escape velocity is often defined to be the minimum initial velocity of an object that is required to escape the surface of a planet (or any large body like a moon) and never return. As usual, we assume no energy lost to an atmosphere, should there be any.

Consider the case where an object is launched from the surface of a planet with an initial velocity directed away from the planet. With the minimum velocity needed to escape, the object would just come to rest infinitely far away, that is, the object gives up the last of its kinetic energy just as it reaches infinity, where the force of gravity becomes zero. Since U 0 as r , this means the total energy is zero. Thus, we find the escape velocity    from the surface of an astronomical body of mass M and radius R by setting the total energy equal to zero. At the surface of the body, the object is located at r 1 = R and it has escape velocity v 1 = v esc . It reaches r 2 = with velocity v 2 = 0 . Substituting into [link] , we have

Questions & Answers

show whether or not the expression v^2= u^2 sin^2 d- 2gs is dimensionally constant
Oyetayo Reply
the period T of a pendulum depends on its mass m, length l and acceleration due to gravity g. using dimensional analysis, derive for T.
Oyetayo
what is physics
Satyabrata Reply
Physics is the tool humans use to understand the properties characteristics and interactions of where they live - the universe. Thus making laws and theories about the universe in a mathematical way derived from empirical results yielded in tons of experiments.
Jomari
This tool, the physics, also enhances their way of thinking. Evolving integrating and enhancing their critical logical rational and philosophical thinking since the greeks fired the first neurons of physics.
Jomari
nice
Satyabrata
Physics is also under the category of Physical Science which deals with the behavior and properties of physical quantities around us.
Angelo
Physical Science is under the category of Physics*... I prefer the most is Theoretical Physics where it deals with the philosophical view of our world.
Jomari
what is unit
Satyabrata Reply
Metric unit
Arzoodan
A unit is what comes after a number that gives a precise detail on what the number means. For example, 10 kilograms, 10 is the number while "kilogram" is the unit.
Angelo
there are also different types of units, but metric is the most widely used. It is called the SI system. Please research this on google.
Angelo
Unit? Bahay yon
Jomari
How did you get the value as Dcd=0.2Dab
ebewele Reply
Why as Dcd=0.2Dab? where are you got this formula?...
Arzoodan
since the distance Dcd=1.2 and the distance Dab=6.0 the ratio 1.2/6.0 gives the equation Dcd=0.2Dab
sunday
Well done.
Arzoodan
how do we add or deduct zero errors from result gotten using vernier calliper?
Aina Reply
how can i understand if the function are odd or even or neither odd or even
hamzaani
I don't get... do you mean positive or negative@hamzaani
Aina
Verner calliper is an old calculator
Antonio
Function is even if f(-x) =f(x)
Antonio
Function is odd if f(-x) = - f(x)
Antonio
what physical phenomena is resonance?
amrit Reply
is there any resonance in weight?
amrit
Resonance is due to vibrations and waves
Antonio
wait there is a chat here
dare
what is the difference between average velocity and magnitude of displacement
ibrahim
how velocity change with time
ibrahim
average velocity can be zero positive negative but magnitude of displacement is positive
amrit
if there is different displacement in same interval of time
amrit
Displacement can be zero, if you came back
Antonio
Displacement its a [L]
Antonio
Velocity its a vector
Antonio
Speed its the magnitude of velocity
Antonio
[Vt2-Vt1]/[t2-t1] = average velocity,another vector
Antonio
Distance, that and only that can't be negative, and is not a vector
Antonio
Distance its a metrical characteristic of the euclidean space
Antonio
Velocity change in time due a force acting (an acceleration)
Antonio
the change in velocity can be found using conservation of energy if the displacement is known
Jose
BEFORE = AFTER
Jose
kinetic energy + potential energy is equal to the kinetic energy after
Jose
the potential energy can be described as made times displacement times acceleration. I.e the work done on the object
Jose
mass*
Jose
from there make the final velocity the subject and solve
Jose
If its a conservative field
Antonio
So, no frictions in this case
Antonio
right
Jose
and if still conservative but force is in play then simply include work done by friction
Jose
Is not simple, is a very unknown force
Antonio
the vibration of a particle due to vibration of a similar particle close to it.
Aina
No, not so simple
Antonio
Frequency is involved
Antonio
mechanical wave?
Aina
All kind of waves, even in the sea
Antonio
will the LCR circut pure inductive if applied frequency becomes more than the natural frequency of AC circut? if yes , why?
Muskan Reply
LCR pure inductive? Is an nonsense
Antonio
what is photon
Elijah Reply
Photon is the effect of the Maxwell equations, it's the graviton of the electromagnetic field
Antonio
a particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.
Areej
Quantum it's not exact, its the elementary particle of electromagnetic field. Its not well clear if quantum theory its so, or if it's classical mechanics improved
Antonio
A photon is first and foremost a particle. And hence obeys Newtonian Mechanics. It is what visible light and other electromagnetic waves is made up of.
eli
No a photon has speed of light, and no mass, so is not Newtonian Mechanics
Antonio
photon is both a particle and a wave (It is the property called particle-wave duality). It is nearly massless, and travels at speed c. It interacts with and carries electromagnetic force.
Angelo
what are free vectors
sunday Reply
a vector hows point of action doesn't static . then vector can move bodily from one point to another point located on its original tragectory.
Anuj
A free vector its an element of an Affine Space
Antonio
Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews runs downfield at 45° with respect to the 50-yard line and covers 8.0 m in 1 s. He then runs straight down the field at 90° with respect to the 50-yard line for 12 m, with an elapsed time of 1.2 s. (a) What is Matthews’ final displacement from the start of the play? (b) What is his average velocity?
Macy Reply
Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews runs downfield at 45° with respect to the 50-yard line and covers 8.0 m in 1 s. He then runs straight down the field at 90° with respect to the 50-yard line for 12 m, with an elap
ibrahim
Very easy man
Antonio
how to find time moved by a mass on a spring
CHIDERA Reply
Maybe you mean frequency
Antonio
why hot soup is more tastier than cold soup?
Hamisi Reply
energy is involved
michael
hot soup is more energetic and thus enhances the flavor than a cold one.
Angelo
Its not Physics... Firstly, It falls under Anatomy. Your taste buds are the one to be blame not its coldness or hotness. Secondly, it depends on how the soup is done. Different soups possess different flavors and savors. If its on Physics, coldness of the soup will just bore you and if its hot...
Jomari
what is the importance of banking road in the circular path
Hamisi Reply
the coefficient of static friction of the tires and the pavement becomes less important because the angle of the banked curve helps friction to prevent slipping
Jose
an insect is at the end of the ring and the ring is rotating at an angular speed 'w' and it reaches to centre find its angular speed.
Bharani Reply
Angular speed is the rate at which an object changes its angle (measured) in radians, in a given time period. Angular speed has a magnitude (a value) only.  v represents the linear speed of a rotating object, r its radius, and ω its angular velocity in units of radians per unit of time, then v = rω
Lady
Angular speed = (final angle) - (initial angle) / time = change in position/time. ω = θ /t. ω = angular speed in radians/sec.
Lady
a boy through a ball with minimum velocity of 60 m/s and the ball reach ground 300 metre from him calculate angle of inclination
Emmanuel Reply
Practice Key Terms 2

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask