<< Chapter < Page Chapter >> Page >

Apparent weight: accounting for earth’s rotation

As we saw in Applications of Newton’s Laws , objects moving at constant speed in a circle have a centripetal acceleration directed toward the center of the circle, which means that there must be a net force directed toward the center of that circle. Since all objects on the surface of Earth move through a circle every 24 hours, there must be a net centripetal force on each object directed toward the center of that circle.

Let’s first consider an object of mass m located at the equator, suspended from a scale ( [link] ). The scale exerts an upward force F s away from Earth’s center. This is the reading on the scale, and hence it is the apparent weight    of the object. The weight ( mg ) points toward Earth’s center. If Earth were not rotating, the acceleration would be zero and, consequently, the net force would be zero, resulting in F s = m g . This would be the true reading of the weight.

An illustration of the earth, rotating on its north-south axis, with masses on spring scales shown at three locations. The radius of the earth is labeled as R E, its center is labeled as O. One spring scale is above the north pole. An upward force F S N and a downward force m g are shown acting on the mass on this spring scale. A dashed line is shown from the center of the earth to the north pole. Another spring scale is shown to the right of the equator and a dashed line connects the center of the earth to the equator on the right side of the earth. The forces on the mass on this second spring scale are shown as a force F S E to the right and m g to the left. A third spring scale is shown at an angle lambda to the horizontal. A dashed line at this angle is shown from the center to the surface of the earth. The horizontal distance from the surface of the earth at this angle lambda to the vertical dashed line connecting the center to the north pole is labeled as r. The point on the dashed vertical line where r meets it is labeled P. Three forces are shown for the third mass. One force is labeled F S and points radially outward. A second force, labeled m g points radially inward. A third force, labeled F c, points horizontally to the left.
For a person standing at the equator, the centripetal acceleration ( a c ) is in the same direction as the force of gravity. At latitude λ , the angle the between a c and the force of gravity is λ and the magnitude of a c decreases with cos λ .

With rotation, the sum of these forces must provide the centripetal acceleration, a c . Using Newton’s second law, we have

F = F s m g = m a c where a c = v 2 r .

Note that a c points in the same direction as the weight; hence, it is negative. The tangential speed v is the speed at the equator and r is R E . We can calculate the speed simply by noting that objects on the equator travel the circumference of Earth in 24 hours. Instead, let’s use the alternative expression for a c from Motion in Two and Three Dimensions . Recall that the tangential speed is related to the angular speed ( ω ) by v = r ω . Hence, we have a c = r ω 2 . By rearranging [link] and substituting r = R E , the apparent weight at the equator is

F s = m ( g R E ω 2 ) .

The angular speed of Earth everywhere is

ω = 2 π rad 24 hr × 3600 s/hr = 7.27 × 10 −5 rad/s.

Substituting for the values or R E and ω , we have R E ω 2 = 0.0337 m/s 2 . This is only 0.34% of the value of gravity, so it is clearly a small correction.

Zero apparent weight

How fast would Earth need to spin for those at the equator to have zero apparent weight? How long would the length of the day be?


Using [link] , we can set the apparent weight ( F s ) to zero and determine the centripetal acceleration required. From that, we can find the speed at the equator. The length of day is the time required for one complete rotation.


From [link] , we have F = F s m g = m a c , so setting F s = 0 , we get g = a c . Using the expression for a c , substituting for Earth’s radius and the standard value of gravity, we get

a c = v 2 r = g v = g r = ( 9.80 m/s 2 ) ( 6.37 × 10 6 m ) = 7.91 × 10 3 m/s .

The period T is the time for one complete rotation. Therefore, the tangential speed is the circumference divided by T , so we have

v = 2 π r T T = 2 π r v = 2 π ( 6.37 × 10 6 m ) 7.91 × 10 3 m/s = 5.06 × 10 3 s .

This is about 84 minutes.


We will see later in this chapter that this speed and length of day would also be the orbital speed and period of a satellite in orbit at Earth’s surface. While such an orbit would not be possible near Earth’s surface due to air resistance, it certainly is possible only a few hundred miles above Earth.

Got questions? Get instant answers now!

Questions & Answers

lists 5 drawing instruments and their uses
Micahlolo Reply
that is a question you can find on Google, anyway of top of my head, compass, ruler, protractor, try square, triangles.
A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2R will be
Lalit Reply
The difference between vector and scaler quantity
Yakubu Reply
vector has both magnitude & direction but scalar has only magnitude
my marunong ba dto mag prove ng geometry
how do I find resultant of four forces at a point
use the socatoa rule
draw force diagram, then work out the direction of force.
In a closed system of forces... Summation of forces in any direction or plane is zero... Resolve if there is a need to then add forces in a particular plane or direction.. Say the x direction... Equate it tk zero
define moment of inertia
Manoj Reply
what is Euler s theorem
Manoj Reply
what is thermocouple?
Manoj Reply
joining of two wire of different material forming two junctions. If one is hot and another is cold the it will produce emf...
joining of two metal of different materials to form a junction in one is hot & another is cold
define dimensional analysis
Dennis Reply
mathematical derivation?
explain what Newtonian mechanics is.
Elizabeth Reply
a system of mechanics based of Newton laws motion this is easy difenation of mean...
what is the meaning of single term,mechanics?
mechanics is the science related to the behavior of physical bodies when some external force is applied to them
SO ASK What is Newtonian mechanics in physics? Newtonian physics, also calledNewtonian or classical mechanics, is the description of mechanical events—those that involve forces acting on matter—using the laws of motion and gravitation formulated in the late seventeenth century by English physicist
can any one send me the best reference book for physics?
concept of physics by HC verma, Fundamentals of Physics, university of physics
tq u.
these are the best physics books one can fond both theory and applications.
can any one suggest best book for maths with lot of Tricks?
what is the water height in barometer?
13.5*76 cm. because Mercury is 13.5 times dense than Mercury
water is 13.5 times dense than the Mercury
plz tell me frnds the best reference book for physics along with the names of authors.
i recomended the reference book for physics from library University of Dublin or library Trinity college
A little help here... . 1. Newton's laws of Motion, are they applicable to motions of all speeds? 2.state the speeds which are applicable to Newtons laws of Motion
mechanics which follows Newtons law
The definition of axial and polar vector .
polar vector which have a starting point or pt. of applications is,force,displacement
axial vector represent rotational effect and act along the axis of rotation b
explain the rule of free body diagram
Mithu Reply
The polar coordinates of a point are 4π/3 and 5.50m. What are its Cartesian coordinates?
Tiam Reply
application of elasticity
Nangbun Reply
a boy move with a velocity of 5m/s in 4s. What is the distance covered by the boy?
anthony Reply
What is the time required for the sun to reach the earth?
24th hr's, your question is amazing joke 😂
velocity 20 m, s
the sun shines always and the earth rotates so the question should specify a place on earth and that will be 24hrs
good nice work
why 20?.
v =distance/time so make distance the subject from the equation
what is differemce between principles and laws
maaz Reply
how can a 50W light bulb use more energy than a 1000W oven?
Opoku Reply
That depends on how much time we use them
Define vector law of addition
Pawan Reply
It states that, " If two vectors are represented in magnitude and direction by the two sides of a triangle, then their resultant is represented in magnitude and direction by the third side of the triangl " .
thanks yaar
And it's formula
vectors addition is a geometric addition
Practice Key Terms 2

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?