<< Chapter < Page Chapter >> Page >

Problems

How much energy must the shock absorbers of a 1200-kg car dissipate in order to damp a bounce that initially has a velocity of 0.800 m/s at the equilibrium position? Assume the car returns to its original vertical position.

Got questions? Get instant answers now!

If a car has a suspension system with a force constant of 5.00 × 10 4 N/m , how much energy must the car’s shocks remove to dampen an oscillation starting with a maximum displacement of 0.0750 m?

141 J

Got questions? Get instant answers now!

(a) How much will a spring that has a force constant of 40.0 N/m be stretched by an object with a mass of 0.500 kg when hung motionless from the spring? (b) Calculate the decrease in gravitational potential energy of the 0.500-kg object when it descends this distance. (c) Part of this gravitational energy goes into the spring. Calculate the energy stored in the spring by this stretch, and compare it with the gravitational potential energy. Explain where the rest of the energy might go.

Got questions? Get instant answers now!

Suppose you have a 0.750-kg object on a horizontal surface connected to a spring that has a force constant of 150 N/m. There is simple friction between the object and surface with a static coefficient of friction μ s = 0.100 . (a) How far can the spring be stretched without moving the mass? (b) If the object is set into oscillation with an amplitude twice the distance found in part (a), and the kinetic coefficient of friction is μ k = 0.0850 , what total distance does it travel before stopping? Assume it starts at the maximum amplitude.

a. 4.90 × 10 −3 m ; b. 1.15 × 10 −2 m

Got questions? Get instant answers now!

Additional problems

Suppose you attach an object with mass m to a vertical spring originally at rest, and let it bounce up and down. You release the object from rest at the spring’s original rest length, the length of the spring in equilibrium, without the mass attached. The amplitude of the motion is the distance between the equilibrium position of the spring without the mass attached and the equilibrium position of the spring with the mass attached. (a) Show that the spring exerts an upward force of 2.00 mg on the object at its lowest point. (b) If the spring has a force constant of 10.0 N/m, is hung horizontally, and the position of the free end of the spring is marked as y = 0.0 0 m , where is the new equilibrium position if a 0.25-kg-mass object is hung from the spring? (c) If the spring has a force constant of 10.0 M/m and a 0.25-kg-mass object is set in motion as described, find the amplitude of the oscillations. (d) Find the maximum velocity.

Got questions? Get instant answers now!

A diver on a diving board is undergoing SHM. Her mass is 55.0 kg and the period of her motion is 0.800 s. The next diver is a male whose period of simple harmonic oscillation is 1.05 s. What is his mass if the mass of the board is negligible?

94.7 kg

Got questions? Get instant answers now!

Suppose a diving board with no one on it bounces up and down in a SHM with a frequency of 4.00 Hz. The board has an effective mass of 10.0 kg. What is the frequency of the SHM of a 75.0-kg diver on the board?

Got questions? Get instant answers now!

The device pictured in the following figure entertains infants while keeping them from wandering. The child bounces in a harness suspended from a door frame by a spring. (a) If the spring stretches 0.250 m while supporting an 8.0-kg child, what is its force constant? (b) What is the time for one complete bounce of this child? (c) What is the child’s maximum velocity if the amplitude of her bounce is 0.200 m?

A photo of a baby in a hanging bouncer.
(credit: Lisa Doehnert)

a. 314 N/m; b. 1.00 s; c. 1.25 m/s

Got questions? Get instant answers now!

Questions & Answers

a tire 0.5m in radius rotate at constant rate 200rev/min. find speed and acceleration of small lodged in tread of tire.
Tahira Reply
hmm
Ishaq
100
Noor
define the terms as used in gravitational mortion 1:earth' satellites and write two example 2:parking orbit 3:gravitation potential 4:gravitation potential energy 5:escping velocity 6:gravitation field and gravitation field strength
Malima Reply
what larminar flow
Rajab Reply
smooth or regular flow
Roha
Hii
Sadiq
scalar field define with example
Malik Reply
what is displacement
Isaac Reply
the change in the position of an object in a particular direction is called displacement
Noor
The physical quantity which have both magnitude and direction are known as vector.
Malik
good
Noor
Describe vector integral?
Malik
define line integral
Malik
Examples on how to solve terminal velocity
Louis Reply
what is Force?
Bibas Reply
ans:loading...
Lumai
the sideways pressure exerted by fluid is equal and canceled out.how and why?
Chaurasia
what is blackbody radiation
Syed Reply
Particles emitted by black holes
Lord
what is oscillation
Iwelomen Reply
Bernoulli's equation which applies a fluid flow states that P+h✓g+½PV²=k. where ✓=density. P=pressure. h=height. V= velocity. g=acceleration due to gravity. k= constant. Show that the equation is dimensionally constant and show the S.I unit for k.
amoni Reply
The nature of physics
Darshan Reply
what physics
Darshan
Physics deals with nature and its natural phenomenons
Sushant
physics explains more about mechanics and other natural phenomenon.
Ferdinand
define realitives motion
Zahid Reply
Relative motion is the calculation of the motion of an object with regard to some other moving object. Thus, the motion is not calculated with reference to the earth, but is the velocity of the object in reference to the other moving object as if it were in a static state.
Lansana
I am unable to access the mcq can someone help me with it?
Harkamal Reply
What is free fall?
Barham Reply
when an object is falling under the the influence of the earth gravitational force, the term is called free fall.
Bra
V=E½-P-½ where v; velocity, P; density and E; constant. Find dimension and it's units of E (constant)
michael Reply
ML-3
LAWAL
Practice Key Terms 1

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask