# 7.4 Power  (Page 2/8)

 Page 2 / 8

Check Your Understanding Estimate the power expended by a weightlifter raising a 150-kg barbell 2 m in 3 s.

980 W

The power involved in moving a body can also be expressed in terms of the forces acting on it. If a force $\stackrel{\to }{F}$ acts on a body that is displaced $d\stackrel{\to }{r}$ in a time dt , the power expended by the force is

$P=\frac{dW}{dt}=\frac{\stackrel{\to }{F}·d\stackrel{\to }{r}}{dt}=\stackrel{\to }{F}·\left(\frac{d\stackrel{\to }{r}}{dt}\right)=\stackrel{\to }{F}·\stackrel{\to }{v},$

where $\stackrel{\to }{v}$ is the velocity of the body. The fact that the limits implied by the derivatives exist, for the motion of a real body, justifies the rearrangement of the infinitesimals.

## Automotive power driving uphill

How much power must an automobile engine expend to move a 1200-kg car up a 15% grade at 90 km/h ( [link] )? Assume that 25% of this power is dissipated overcoming air resistance and friction.

## Strategy

At constant velocity, there is no change in kinetic energy, so the net work done to move the car is zero. Therefore the power supplied by the engine to move the car equals the power expended against gravity and air resistance. By assumption, 75% of the power is supplied against gravity, which equals $m\stackrel{\to }{g}·\stackrel{\to }{v}=mgv\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}\theta ,$ where $\theta$ is the angle of the incline. A 15% grade means $\text{tan}\phantom{\rule{0.2em}{0ex}}\theta =0.15.$ This reasoning allows us to solve for the power required.

## Solution

Carrying out the suggested steps, we find

$0.75\phantom{\rule{0.2em}{0ex}}P=mgv\phantom{\rule{0.2em}{0ex}}\text{sin}\left({\text{tan}}^{-1}\phantom{\rule{0.2em}{0ex}}0.15\right),$

or

$P=\frac{\left(1200\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}9.8\phantom{\rule{0.2em}{0ex}}\text{N}\right)\left(90\phantom{\rule{0.2em}{0ex}}\text{m}\text{/}3.6\phantom{\rule{0.2em}{0ex}}\text{s}\right)\text{sin}\left(8.53\text{°}\right)}{0.75}=58\phantom{\rule{0.2em}{0ex}}\text{kW,}$

or about 78 hp. (You should supply the steps used to convert units.)

## Significance

This is a reasonable amount of power for the engine of a small to mid-size car to supply $\left(1\phantom{\rule{0.2em}{0ex}}\text{hp}=0.746\phantom{\rule{0.2em}{0ex}}\text{kW}\text{).}$ Note that this is only the power expended to move the car. Much of the engine’s power goes elsewhere, for example, into waste heat. That’s why cars need radiators. Any remaining power could be used for acceleration, or to operate the car’s accessories.

## Summary

• Power is the rate of doing work; that is, the derivative of work with respect to time.
• Alternatively, the work done, during a time interval, is the integral of the power supplied over the time interval.
• The power delivered by a force, acting on a moving particle, is the dot product of the force and the particle’s velocity.

## Key equations

 Work done by a force over an infinitesimal displacement $dW=\stackrel{\to }{F}·d\stackrel{\to }{r}=|\stackrel{\to }{F}||d\stackrel{\to }{r}|\text{cos}\phantom{\rule{0.2em}{0ex}}\theta$ Work done by a force acting along a path from A to B ${W}_{AB}=\underset{\text{path}AB}{\int }\stackrel{\to }{F}·d\stackrel{\to }{r}$ Work done by a constant force of kinetic friction ${W}_{\text{fr}}=\text{−}{f}_{k}|{l}_{AB}|$ Work done going from A to B by Earth’s gravity, near its surface ${W}_{\text{grav,}AB}=\text{−}mg\left({y}_{B}-{y}_{A}\right)$ Work done going from A to B by one-dimensional spring force ${W}_{\text{spring,}AB}=\text{−}\left(\frac{1}{2}k\right)\left({x}_{B}^{2}-{x}_{A}^{2}\right)$ Kinetic energy of a non-relativistic particle $K=\frac{1}{2}m{v}^{2}=\frac{{p}^{2}}{2m}$ Work-energy theorem ${W}_{\text{net}}={K}_{B}-{K}_{A}$ Power as rate of doing work $P=\frac{dW}{dt}$ Power as the dot product of force and velocity $P=\stackrel{\to }{F}·\stackrel{\to }{v}$

## Conceptual questions

Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a zero-watt device.) Explain in terms of the definition of power.

Appliances are rated in terms of the energy consumed in a relatively small time interval. It does not matter how long the appliance is on, only the rate of change of energy per unit time.

Can any one give me the definition for Bending moment plz...
I need a question for moment
what is charge
An attribution of particle that we have thought about to explain certain things like Electomagnetism
Nikunj
please what is the formula instantaneous velocity in projectile motion
A computer is reading from a CD-ROM that rotates at 780 revolutions per minute.What is the centripetal acceleration at a point that is 0.030m from the center of the disc?
change revolution per minute by multiplying from 2pie and devide by 60.and take r=.030 and use formula centripital acceleration =omega sqare r.
Kumar
OK thank you
Rapqueen
observation of body boulded
a gas is compressed to 1/10 0f its original volume.calculate the rise temperature if the original volume is 400k. gamma =1.4
the specific heat of hydrogen at constant pressure and temperature is 14.16kj|k.if 0.8kg of hydrogen is heated from 55 degree Celsius to 80 degree Celsius of a constant pressure. find the external work done .
Celine
hi
shaik
hy
Prasanna
g
what is imaginary mass and how we express is
what is imaginary mass how we express it
Yash
centre of mass is also called as imaginary mass
Lokmani
l'm from Algeria and fell these can help me
Many amusement parks have rides that make vertical loops like the one shown below. For safety, the cars are attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will supply the centripetal force. What other force acts and what is its direction if: (a) The car goes over the top at faster than this speed? (b) The car goes over the top at slower than this speed?
how can I convert mile to meter per hour
1 mile * 1609m
Boon
hey can someone show me how to solve the - "Hanging from the ceiling over a baby bed ...." question
i wanted to know the steps
Shrushti
sorry shrushti..
Rashid
which question please write it briefly
Asutosh
Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7 m/s2 .
what is summit
Asutosh
highest point on earth
Ngeh
पृथवी को इसके अक्ष पर कितने कोणीय चाल से घूमाऐ कि भूमधय पे आदमी का भार इसके वासतविक भार से 3/5अधिक हो
best
Murari
At a post office, a parcel that is a 20.0-kg box slides down a ramp inclined at 30.0° 30.0° with the horizontal. The coefficient of kinetic friction between the box and plane is 0.0300. (a) Find the acceleration of the box. (b) Find the velocity of the box as it reaches the end of the plane, if the length of the plane is 2 m and the box starts at rest.
As an IT student must I take physics seriously?
yh
Bernice
hii
Raja
IT came from physics and maths so I don't see why you wouldn't
conditions for pure rolling
Md