<< Chapter < Page Chapter >> Page >
The motion and energy of a mass attached to a horizontal spring, spring constant k, at various points in its motion. In figure (a) the mass is displaced to a position x = A to the right of x =0 and released from rest (v=0.) The spring is stretched. The force on the mass is to the left. The diagram is labeled with one half k A squared. (b) The mass is at x = 0 and moving in the negative x-direction with velocity – v sub max. The spring is relaxed. The Force on the mass is zero. The diagram is labeled with one half m quantity v sub max squared. (c) The mass is at minus A, to the left of x = 0 and is at rest (v =0.) The spring is compressed. The force F is to the right. The diagram is labeled with one half k quantity minus A squared. (d) The mass is at x = 0 and moving in the positive x-direction with velocity plus v sub max. The spring is relaxed. The Force on the mass is zero. The diagram is labeled with one half m v sub max squared. (e) the mass is again at x = A to the right of x =0. The diagram is labeled with one half k A squared.
The transformation of energy in SHM for an object attached to a spring on a frictionless surface. (a) When the mass is at the position x = + A , all the energy is stored as potential energy in the spring U = 1 2 k A 2 . The kinetic energy is equal to zero because the velocity of the mass is zero. (b) As the mass moves toward x = A , the mass crosses the position x = 0 . At this point, the spring is neither extended nor compressed, so the potential energy stored in the spring is zero. At x = 0 , the total energy is all kinetic energy where K = 1 2 m ( v max ) 2 . (c) The mass continues to move until it reaches x = A where the mass stops and starts moving toward x = + A . At the position x = A , the total energy is stored as potential energy in the compressed U = 1 2 k ( A ) 2 and the kinetic energy is zero. (d) As the mass passes through the position x = 0 , the kinetic energy is K = 1 2 m v max 2 and the potential energy stored in the spring is zero. (e) The mass returns to the position x = + A , where K = 0 and U = 1 2 k A 2 .

Consider [link] , which shows the energy at specific points on the periodic motion. While staying constant, the energy oscillates between the kinetic energy of the block and the potential energy stored in the spring:

E Total = U + K = 1 2 k x 2 + 1 2 m v 2 .

The motion of the block on a spring in SHM is defined by the position x ( t ) = A cos ( ω t + ϕ ) with a velocity of v ( t ) = A ω sin ( ω t + ϕ ) . Using these equations, the trigonometric identity cos 2 θ + sin 2 θ = 1 and ω = k m , we can find the total energy of the system:

E Total = 1 2 k A 2 cos 2 ( ω t + ϕ ) + 1 2 m A 2 ω 2 sin 2 ( ω t + ϕ ) = 1 2 k A 2 cos 2 ( ω t + ϕ ) + 1 2 m A 2 ( k m ) sin 2 ( ω t + ϕ ) = 1 2 k A 2 cos 2 ( ω t + ϕ ) + 1 2 k A 2 sin 2 ( ω t + ϕ ) = 1 2 k A 2 ( cos 2 ( ω t + ϕ ) + sin 2 ( ω t + ϕ ) ) = 1 2 k A 2 .

The total energy of the system of a block and a spring is equal to the sum of the potential energy stored in the spring plus the kinetic energy of the block and is proportional to the square of the amplitude E Total = ( 1 / 2 ) k A 2 . The total energy of the system is constant.

A closer look at the energy of the system shows that the kinetic energy oscillates like a sine-squared function, while the potential energy oscillates like a cosine-squared function. However, the total energy for the system is constant and is proportional to the amplitude squared. [link] shows a plot of the potential, kinetic, and total energies of the block and spring system as a function of time. Also plotted are the position and velocity as a function of time. Before time t = 0.0 s, the block is attached to the spring and placed at the equilibrium position. Work is done on the block by applying an external force, pulling it out to a position of x = + A . The system now has potential energy stored in the spring. At time t = 0.00 s, the position of the block is equal to the amplitude, the potential energy stored in the spring is equal to U = 1 2 k A 2 , and the force on the block is maximum and points in the negative x -direction ( F S = k A ) . The velocity and kinetic energy of the block are zero at time t = 0.00 s . At time t = 0.00 s, the block is released from rest.

Graphs of the energy, position, and velocity as functions of time for a mass on a spring. On the left is the graph of energy in Joules (J) versus time in seconds. The vertical axis range is zero to one half k A squared. The horizontal axis range is zero to T. Three curves are shown. The total energy E sub total is shown as a green line. The total energy is a constant at a value of one half k A squared. The kinetic energy K equals one half m v squared is shown as a red curve. K starts at zero energy at t=0, and rises to a maximum value of one half k A squared at time 1/4 T, then decreases to zero at 1/2 T, rises to one half k A squared at 3/4 T, and is zero again at T. Potential energy U equals one half k x squared is shown as a blue curve. U starts at maximum energy of one half k A squared at t=0, decreases to zero at 1/4 T, rises to one half k A squared at 1/2 T, is zero again at 3/4 T and is at the maximum of one half k A squared again at t=T. On the right is a graph of position versus time above a graph of velocity versus time. The position graph has x in meters, ranging from –A to +A, versus time in seconds. The position is at +A and decreasing at t=0, reaches a minimum of –A, then rises to +A. The velocity graph has v in m/s, ranging from minus v sub max to plus v sub max, versus time in seconds. The velocity is zero and decreasing at t=0, and reaches a minimum of minus v sub max at the same time that the position graph is zero. The velocity is zero again when the position is at x=-A, rises to plus v sub max when the position is zero, and v=0 at the end of the graph, where the position Is again maximum.
Graph of the kinetic energy, potential energy, and total energy of a block oscillating on a spring in SHM. Also shown are the graphs of position versus time and velocity versus time. The total energy remains constant, but the energy oscillates between kinetic energy and potential energy. When the kinetic energy is maximum, the potential energy is zero. This occurs when the velocity is maximum and the mass is at the equilibrium position. The potential energy is maximum when the speed is zero. The total energy is the sum of the kinetic energy plus the potential energy and it is constant.

Questions & Answers

who discover periodic table?
lovet Reply
it wasn't discovered , it was made.and the person who made it was dmitri mendeleev. dobreinier and newland gave their laws before dmitri related periodic table but wasn't successful in their work
Ritik
Nope, numerous number of scientist had actually contributed in the making of periodic table. Dmitri Mendeleev succeeded making all the elements into the right order in accordance to their atomic number.
Dame
what is the Greek name for calcium
Oniyide Reply
different types of wave
Yog Reply
longitudinal and transverse waves
Ravindra
a gun is kept in the state that it cannot move anywhere and the bullet is fired. Then what is the effect on the velocity of bullet and KE of gun ?
Gobinda Reply
want is meant by the term solar system
jafar Reply
it refers to the sun and all heavenly bodies revolving around it.
Danie
excatly...for sure
Arzoodan
in addition to Danie's, a solar system is a collection of planets and their moons, asteroids, and other objects bound together by the Star's gravitational force directly or indirectly.
Galiwango
what is meant by total internal reflection
Akshay Reply
what iw meant by total internal reflection
Akshay
Lorentz force?
jyotirmayee
study fibre optics. .you will get total internal reflection
Siddhansh
wha
jyotirmayee
what is Lorentz force?
jyotirmayee
a ray of light traveling at an angle of incidence greater than critical angle from denser to rarer medium is totally reflected back into the denser medium is called total internal reflaction
Manoj
motion in strat line where is this chapter
Vijaybhai Reply
motion in straight line is kinematic's part
Ritik
yea
Manoj
this defination isn't correct
Arzoodan
motion in one dimension
Anil
what is Lorentz force?
jyotirmayee Reply
what is maxwell electromagnetic law?
jyotirmayee
at what angle should the two forces 2p and root 2p acts so that the resultant force is p root 10
Akshay Reply
what answer fir this
Akshay
what's the working difference between a dynamo and a pump?
Piyali Reply
a dynamo is basically a dc generator while pump is usually equipped with a motor
vedanth
a dynamo converts mechanical energy to electrical while a pump is opposite to that
vedanth
nice
Piyali
okay
Friday
why sea water looks bluish?
Piyali Reply
cuz the sky is blue...
Mehdi
you see the reflexion of the "blue" sky in the water
Mehdi
somewhere sea water turns green why?
Piyali
never seen bro... are u sure ?
Mehdi
ur answer was correct but due to the presence of phytoplankton color can be changed near the shore
Piyali
waaaww... you re awesome
Mehdi
because of the reflection of the sky
Friday
rays coming from the sun consist of all 7 colours ie.VIBGYOR. when the ray strikes surface of water,all colors gets absorbed by it except blue which gets reflected by it.so we find the sea water appearing bluish
Ritik
how can someone identify sea water from rain water
Oniyide
i think it's not possible as because rainwater consists of water from all kind of water bodies ie.lakes,seas etc but u can predict if u have a sea nearby ur home or city
Ritik
i need solutions of unuversity pbysucs volume 1
Vimla Reply
me too
Nirupam
Help us if anyone knows
Nirupam
bring questions
john
actually if u wanted whole book solution then u should buy the solution book
jyotirmayee
from where
Nirupam
where do u live ,,,,,if u live in Delhi then at bellsarayeiii or from stationary store ,,,,chatarpurrr ,,,,,there is a popular books store,,,,,u have to buy from there
jyotirmayee
Kota Rajasthan
Nirupam
so strange,,,,,r u preparing for pmt,,,?
jyotirmayee
for IIT
Nirupam
then concern near book store
jyotirmayee
in Rajasthan
jyotirmayee
or ask questions here
jyotirmayee
thanks for your help
Nirupam
its fine,,most welcome
jyotirmayee
what is three dimensional coordinate system?
Sachindra Reply
considering the change of vectors in all three dimensions of space
vedanth
direction co-sign of vector questions
Vipin Reply
opposite
Sonu
opposite mean
Vipin
what is the different between action and reaction?
Asali Reply
action is external force. Reaction exists because of the external action. Reaction is mostly an internal force
Yoblaze
The difference is said in the word itself. There is no existance of reaction without an application of action. So action occur first then reaction. Reaction may produce in body itself or to other body i.e., it may be internal or external.
Amalesh
or we can say , reaction is the result of action
Ritik
Practice Key Terms 3

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask