Situations in which fluid flows at a constant depth are so common that this equation is often also called
Bernoulli’s principle , which is simply Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of fluid as we follow it along its path.) Bernoulli’s principle reinforces the fact that pressure drops as speed increases in a moving fluid: If
${v}_{2}$ is greater than
${v}_{1}$ in the equation, then
${p}_{2}$ must be less than
${p}_{1}$ for the equality to hold.
Calculating pressure
In
[link] , we found that the speed of water in a hose increased from 1.96 m/s to 25.5 m/s going from the hose to the nozzle. Calculate the pressure in the hose, given that the absolute pressure in the nozzle is
$1.01\phantom{\rule{0.2em}{0ex}}\times \phantom{\rule{0.2em}{0ex}}{10}^{5}\phantom{\rule{0.2em}{0ex}}{\text{N/m}}^{2}$ (atmospheric, as it must be) and assuming level, frictionless flow.
Strategy
Level flow means constant depth, so Bernoulli’s principle applies. We use the subscript 1 for values in the hose and 2 for those in the nozzle. We are thus asked to find
${p1}_{}$ .
Solution
Solving Bernoulli’s principle for
${p}_{1}$ yields
This absolute pressure in the hose is greater than in the nozzle, as expected, since
v is greater in the nozzle. The pressure
${p}_{2}$ in the nozzle must be atmospheric, because the water emerges into the atmosphere without other changes in conditions.
Many devices and situations occur in which fluid flows at a constant height and thus can be analyzed with Bernoulli’s principle.
Entrainment
People have long put the Bernoulli principle to work by using reduced pressure in high-velocity fluids to move things about. With a higher pressure on the outside, the high-velocity fluid forces other fluids into the stream. This process is called
entrainment . Entrainment devices have been in use since ancient times as pumps to raise water to small heights, as is necessary for draining swamps, fields, or other low-lying areas. Some other devices that use the concept of entrainment are shown in
[link] .
Velocity measurement
[link] shows two devices that apply Bernoulli’s principle to measure fluid velocity. The manometer in part (a) is connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the oncoming fluid creates a dead spot having zero velocity (
${v}_{1}=0$ ) in front of it, while fluid passing the other tube has velocity
${v}_{2}$ . This means that Bernoulli’s principle as stated in
Physics is the tool humans use to understand the properties characteristics and interactions of where they live - the universe. Thus making laws and theories about the universe in a mathematical way derived from empirical results yielded in tons of experiments.
Jomari
This tool, the physics, also enhances their way of thinking. Evolving integrating and enhancing their critical logical rational and philosophical thinking since the greeks fired the first neurons of physics.
Jomari
nice
Satyabrata
Physics is also under the category of Physical Science which deals with the behavior and properties of physical quantities around us.
Angelo
Physical Science is under the category of Physics*... I prefer the most is Theoretical Physics where it deals with the philosophical view of our world.
A unit is what comes after a number that gives a precise detail on what the number means. For example, 10 kilograms, 10 is the number while "kilogram" is the unit.
Angelo
there are also different types of units, but metric is the most widely used. It is called the SI system. Please research this on google.
Photon is the effect of the Maxwell equations, it's the graviton of the electromagnetic field
Antonio
a particle representing a quantum of light or other electromagnetic radiation. A photon carries energy proportional to the radiation frequency but has zero rest mass.
Areej
Quantum it's not exact, its the elementary particle of electromagnetic field. Its not well clear if quantum theory its so, or if it's classical mechanics improved
Antonio
A photon is first and foremost a particle. And hence obeys Newtonian Mechanics. It is what visible light and other electromagnetic waves is made up of.
eli
No a photon has speed of light, and no mass, so is not Newtonian Mechanics
Antonio
photon is both a particle and a wave (It is the property called particle-wave duality). It is nearly massless, and travels at speed c. It interacts with and carries electromagnetic force.
a vector hows point of action doesn't static . then vector can move bodily from one point to another point located on its original tragectory.
Anuj
A free vector its an element of an Affine Space
Antonio
Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews runs downfield at 45° with respect to the 50-yard line and covers 8.0 m in 1 s. He then runs straight down the field at 90° with respect to the 50-yard line for 12 m, with an elapsed time of 1.2 s. (a) What is Matthews’ final displacement from the start of the play? (b) What is his average velocity?
Clay Matthews, a linebacker for the Green Bay Packers, can reach a speed of 10.0 m/s. At the start of a play, Matthews runs downfield at 45Â° with respect to the 50-yard line and covers 8.0 m in 1 s. He then runs straight down the field at 90Â° with respect to the 50-yard line for 12 m, with an elap
hot soup is more energetic and thus enhances the flavor than a cold one.
Angelo
Its not Physics... Firstly, It falls under Anatomy. Your taste buds are the one to be blame not its coldness or hotness. Secondly, it depends on how the soup is done. Different soups possess different flavors and savors. If its on Physics, coldness of the soup will just bore you and if its hot...
Jomari
what is the importance of banking road in the circular path
the coefficient of static friction of the tires and the pavement becomes less important because the angle of the banked curve helps friction to prevent slipping
Jose
an insect is at the end of the ring and the ring is rotating at an angular speed 'w' and it reaches to centre find its angular speed.
Angular speed is the rate at which an object changes its angle (measured) in radians, in a given time period. Angular speed has a magnitude (a value) only.
v represents the linear speed of a rotating object, r its radius, and ω its angular velocity in units of radians per unit of time, then v = rω
Lady
Angular speed = (final angle) - (initial angle) / time = change in position/time. ω = θ /t. ω = angular speed in radians/sec.
Lady
a boy through a ball with minimum velocity of 60 m/s and the ball reach ground 300 metre from him calculate angle of inclination