<< Chapter < Page Chapter >> Page >

As noted earlier, we see that U 0 as r . If the total energy is zero, then as m reaches a value of r that approaches infinity, U becomes zero and so must the kinetic energy. Hence, m comes to rest infinitely far away from M . It has “just escaped” M . If the total energy is positive, then kinetic energy remains at r = and certainly m does not return. When the total energy is zero or greater, then we say that m is not gravitationally bound to M .

On the other hand, if the total energy is negative, then the kinetic energy must reach zero at some finite value of r , where U is negative and equal to the total energy. The object can never exceed this finite distance from M , since to do so would require the kinetic energy to become negative, which is not possible. We say m is gravitationally bound    to M .

We have simplified this discussion by assuming that the object was headed directly away from the planet. What is remarkable is that the result applies for any velocity. Energy is a scalar quantity and hence [link] is a scalar equation—the direction of the velocity plays no role in conservation of energy. It is possible to have a gravitationally bound system where the masses do not “fall together,” but maintain an orbital motion about each other.

We have one important final observation. Earlier we stated that if the total energy is zero or greater, the object escapes. Strictly speaking, [link] and [link] apply for point objects. They apply to finite-sized, spherically symmetric objects as well, provided that the value for r in [link] is always greater than the sum of the radii of the two objects. If r becomes less than this sum, then the objects collide. (Even for greater values of r , but near the sum of the radii, gravitational tidal forces could create significant effects if both objects are planet sized. We examine tidal effects in Tidal Forces .) Neither positive nor negative total energy precludes finite-sized masses from colliding. For real objects, direction is important.

How far can an object escape?

Let’s consider the preceding example again, where we calculated the escape speed from Earth and the Sun, starting from Earth’s orbit. We noted that Earth already has an orbital speed of 30 km/s. As we see in the next section, that is the tangential speed needed to stay in circular orbit. If an object had this speed at the distance of Earth’s orbit, but was headed directly away from the Sun, how far would it travel before coming to rest? Ignore the gravitational effects of any other bodies.

Strategy

The object has initial kinetic and potential energies that we can calculate. When its speed reaches zero, it is at its maximum distance from the Sun. We use [link] , conservation of energy, to find the distance at which kinetic energy is zero.

Solution

The initial position of the object is Earth’s radius of orbit and the intial speed is given as 30 km/s. The final velocity is zero, so we can solve for the distance at that point from the conservation of energy equation. Using R ES = 1.50 × 10 11 m and M Sun = 1.99 × 10 30 kg , we have

1 2 m v 1 2 G M m r 1 = 1 2 m v 2 2 G M m r 2 1 2 m ( 3.0 × 10 3 m/s ) 2 ( 6.67 × 10 −11 N · m/kg 2 ) ( 1.99 × 10 30 kg ) m 1.50 × 10 11 m = 1 2 m 0 2 ( 6.67 × 10 −11 N · m/kg 2 ) ( 1.99 × 10 30 kg ) m r 2

where the mass m cancels. Solving for r 2 we get r 2 = 3.0 × 10 11 m . Note that this is twice the initial distance from the Sun and takes us past Mars’s orbit, but not quite to the asteroid belt.

Significance

The object in this case reached a distance exactly twice the initial orbital distance. We will see the reason for this in the next section when we calculate the speed for circular orbits.

Got questions? Get instant answers now!

Check Your Understanding Assume you are in a spacecraft in orbit about the Sun at Earth’s orbit, but far away from Earth (so that it can be ignored). How could you redirect your tangential velocity to the radial direction such that you could then pass by Mars’s orbit? What would be required to change just the direction of the velocity?

You change the direction of your velocity with a force that is perpendicular to the velocity at all points. In effect, you must constantly adjust the thrusters, creating a centripetal force until your momentum changes from tangential to radial. A simple momentum vector diagram shows that the net change in momentum is 2 times the magnitude of momentum itself. This turns out to be a very inefficient way to reach Mars. We discuss the most efficient way in Kepler’s Laws of Planetary Motion .

Got questions? Get instant answers now!

Summary

  • The acceleration due to gravity changes as we move away from Earth, and the expression for gravitational potential energy must reflect this change.
  • The total energy of a system is the sum of kinetic and gravitational potential energy, and this total energy is conserved in orbital motion.
  • Objects must have a minimum velocity, the escape velocity, to leave a planet and not return.
  • Objects with total energy less than zero are bound; those with zero or greater are unbounded.

Conceptual questions

It was stated that a satellite with negative total energy is in a bound orbit, whereas one with zero or positive total energy is in an unbounded orbit. Why is this true? What choice for gravitational potential energy was made such that this is true?

Got questions? Get instant answers now!

It was shown that the energy required to lift a satellite into a low Earth orbit (the change in potential energy) is only a small fraction of the kinetic energy needed to keep it in orbit. Is this true for larger orbits? Is there a trend to the ratio of kinetic energy to change in potential energy as the size of the orbit increases?

As we move to larger orbits, the change in potential energy increases, whereas the orbital velocity decreases. Hence, the ratio is highest near Earth’s surface (technically infinite if we orbit at Earth’s surface with no elevation change), moving to zero as we reach infinitely far away.

Got questions? Get instant answers now!

Problems

Find the escape speed of a projectile from the surface of Mars.

5000 m/s

Got questions? Get instant answers now!

Find the escape speed of a projectile from the surface of Jupiter.

Got questions? Get instant answers now!

What is the escape speed of a satellite located at the Moon’s orbit about Earth? Assume the Moon is not nearby.

1440 m/s

Got questions? Get instant answers now!

(a) Evaluate the gravitational potential energy between two 5.00-kg spherical steel balls separated by a center-to-center distance of 15.0 cm. (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast will they be traveling upon impact. Each sphere has a radius of 5.10 cm.

Got questions? Get instant answers now!

An average-sized asteroid located 5.0 × 10 7 km from Earth with mass 2.0 × 10 13 kg is detected headed directly toward Earth with speed of 2.0 km/s. What will its speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)

11 km/s

Got questions? Get instant answers now!

(a) What will be the kinetic energy of the asteroid in the previous problem just before it hits Earth? b) Compare this energy to the output of the largest fission bomb, 2100 TJ. What impact would this have on Earth?

Got questions? Get instant answers now!

(a) What is the change in energy of a 1000-kg payload taken from rest at the surface of Earth and placed at rest on the surface of the Moon? (b) What would be the answer if the payload were taken from the Moon’s surface to Earth? Is this a reasonable calculation of the energy needed to move a payload back and forth?

a. 5.85 × 10 10 J ; b. −5.85 × 10 10 J ; No. It assumes the kinetic energy is recoverable. This would not even be reasonable if we had an elevator between Earth and the Moon.

Got questions? Get instant answers now!

Questions & Answers

Can someone please tell what really happened to planet Pluto
Ejiba Reply
what are the first 20 elements in periodic table.
Ejiba Reply
H,O...
Arzoodan
what happened to the rest now, or have you forgotten?
Ejiba
who discover periodic table?
lovet Reply
it wasn't discovered , it was made.and the person who made it was dmitri mendeleev. dobreinier and newland gave their laws before dmitri related periodic table but wasn't successful in their work
Ritik
Nope, numerous number of scientist had actually contributed in the making of periodic table. Dmitri Mendeleev succeeded making all the elements into the right order in accordance to their atomic number.
Dame
what is the Greek name for calcium
Oniyide Reply
Greek word for calcium is asvestio while Latin name is calf meaning lime or limestone
Ejiba
different types of wave
Yog Reply
longitudinal and transverse waves
Ravindra
a gun is kept in the state that it cannot move anywhere and the bullet is fired. Then what is the effect on the velocity of bullet and KE of gun ?
Gobinda Reply
want is meant by the term solar system
jafar Reply
it refers to the sun and all heavenly bodies revolving around it.
Danie
excatly...for sure
Arzoodan
in addition to Danie's, a solar system is a collection of planets and their moons, asteroids, and other objects bound together by the Star's gravitational force directly or indirectly.
Galiwango
what is meant by total internal reflection
Akshay Reply
what iw meant by total internal reflection
Akshay
Lorentz force?
jyotirmayee
study fibre optics. .you will get total internal reflection
Siddhansh
wha
jyotirmayee
what is Lorentz force?
jyotirmayee
a ray of light traveling at an angle of incidence greater than critical angle from denser to rarer medium is totally reflected back into the denser medium is called total internal reflaction
Manoj
motion in strat line where is this chapter
Vijaybhai Reply
motion in straight line is kinematic's part
Ritik
yea
Manoj
this defination isn't correct
Arzoodan
motion in one dimension
Anil
what is Lorentz force?
jyotirmayee Reply
what is maxwell electromagnetic law?
jyotirmayee
at what angle should the two forces 2p and root 2p acts so that the resultant force is p root 10
Akshay Reply
what answer fir this
Akshay
what's the working difference between a dynamo and a pump?
Piyali Reply
a dynamo is basically a dc generator while pump is usually equipped with a motor
vedanth
a dynamo converts mechanical energy to electrical while a pump is opposite to that
vedanth
nice
Piyali
okay
Friday
why sea water looks bluish?
Piyali Reply
cuz the sky is blue...
Mehdi
you see the reflexion of the "blue" sky in the water
Mehdi
somewhere sea water turns green why?
Piyali
never seen bro... are u sure ?
Mehdi
ur answer was correct but due to the presence of phytoplankton color can be changed near the shore
Piyali
waaaww... you re awesome
Mehdi
because of the reflection of the sky
Friday
rays coming from the sun consist of all 7 colours ie.VIBGYOR. when the ray strikes surface of water,all colors gets absorbed by it except blue which gets reflected by it.so we find the sea water appearing bluish
Ritik
how can someone identify sea water from rain water
Oniyide
i think it's not possible as because rainwater consists of water from all kind of water bodies ie.lakes,seas etc but u can predict if u have a sea nearby ur home or city
Ritik
i need solutions of unuversity pbysucs volume 1
Vimla Reply
me too
Nirupam
Help us if anyone knows
Nirupam
bring questions
john
actually if u wanted whole book solution then u should buy the solution book
jyotirmayee
from where
Nirupam
where do u live ,,,,,if u live in Delhi then at bellsarayeiii or from stationary store ,,,,chatarpurrr ,,,,,there is a popular books store,,,,,u have to buy from there
jyotirmayee
Kota Rajasthan
Nirupam
so strange,,,,,r u preparing for pmt,,,?
jyotirmayee
for IIT
Nirupam
then concern near book store
jyotirmayee
in Rajasthan
jyotirmayee
or ask questions here
jyotirmayee
thanks for your help
Nirupam
its fine,,most welcome
jyotirmayee
what is three dimensional coordinate system?
Sachindra Reply
considering the change of vectors in all three dimensions of space
vedanth
Practice Key Terms 2

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask