<< Chapter < Page Chapter >> Page >

Calculating moles per cubic meter and liters per mole

Calculate: (a) the number of moles in 1 . 00 m 3 size 12{1 "." "00"" m" rSup { size 8{3} } } {} of gas at STP, and (b) the number of liters of gas per mole.

Strategy and Solution

(a) We are asked to find the number of moles per cubic meter, and we know from [link] that the number of molecules per cubic meter at STP is 2 . 68 × 10 25 size 12{2 "." "68"´"10" rSup { size 8{"25"} } } {} . The number of moles can be found by dividing the number of molecules by Avogadro’s number. We let n size 12{n} {} stand for the number of moles,

n mol/m 3 = N molecules/m 3 6 . 02 × 10 23 molecules/mol = 2 . 68 × 10 25 molecules/m 3 6 . 02 × 10 23 molecules/mol = 44 . 5 mol/m 3 . size 12{n`"mol/m" rSup { size 8{3} } = { {N`"molecules/m" rSup { size 8{3} } } over {6 "." "02" times "10" rSup { size 8{"23"} } `"molecules/mol"} } = { {2 "." "68" times "10" rSup { size 8{"25"} } `"molecules/m" rSup { size 8{3} } } over {6 "." "02" times "10" rSup { size 8{"23"} } `"molecules/mol"} } ="44" "." 5`"mol/m" rSup { size 8{3} } "." } {}

(b) Using the value obtained for the number of moles in a cubic meter, and converting cubic meters to liters, we obtain

10 3 L/m 3 44 . 5 mol/m 3 = 22 . 5 L/mol . size 12{ { { left ("10" rSup { size 8{3} } `"L/m" rSup { size 8{3} } right )} over {44 "." 5`"mol/m" rSup { size 8{3} } } } ="22" "." 5`"L/mol" "." } {}

Discussion

This value is very close to the accepted value of 22.4 L/mol. The slight difference is due to rounding errors caused by using three-digit input. Again this number is the same for all gases. In other words, it is independent of the gas.

The (average) molar weight of air (approximately 80% N 2 size 12{N rSub { size 8{2} } } {} and 20% O 2 size 12{O rSub { size 8{2} } } {} is M = 28 . 8 g . size 12{M="28" "." 8" g" "." } {} Thus the mass of one cubic meter of air is 1.28 kg. If a living room has dimensions 5 m × 5 m × 3 m, size 12{5" m" times "5 m" times "3 m,"} {} the mass of air inside the room is 96 kg, which is the typical mass of a human.

Got questions? Get instant answers now!

The density of air at standard conditions ( P = 1 atm size 12{ \( P=1" atm"} {} and T = 20 º C ) size 12{T="20"°C \) } {} is 1 . 28 kg/m 3 size 12{1 "." "28"" kg/m" rSup { size 8{3} } } {} . At what pressure is the density 0 . 64 kg/m 3 size 12{0 "." "64 kg/m" rSup { size 8{3} } } {} if the temperature and number of molecules are kept constant?

The best way to approach this question is to think about what is happening. If the density drops to half its original value and no molecules are lost, then the volume must double. If we look at the equation PV = NkT size 12{ ital "PV"= ital "NkT"} {} , we see that when the temperature is constant, the pressure is inversely proportional to volume. Therefore, if the volume doubles, the pressure must drop to half its original value, and P f = 0 . 50 atm . size 12{P rSub { size 8{f} } =0 "." "50"" atm" "." } {}

Got questions? Get instant answers now!

The ideal gas law restated using moles

A very common expression of the ideal gas law uses the number of moles, n size 12{n} {} , rather than the number of atoms and molecules, N size 12{N} {} . We start from the ideal gas law,

PV = NkT, size 12{ ital "PV"= ital "NkT"} {}

and multiply and divide the equation by Avogadro’s number N A size 12{N rSub { size 8{A} } } {} . This gives

PV = N N A N A kT . size 12{ ital "PV"= { {N} over {N rSub { size 8{A} } } } N rSub { size 8{A} } ital "kT" "." } {}

Note that n = N / N A size 12{n=N/N rSub { size 8{A} } } {} is the number of moles. We define the universal gas constant R = N A k size 12{R=N rSub { size 8{A} } k} {} , and obtain the ideal gas law in terms of moles.

Ideal gas law (in terms of moles)

The ideal gas law (in terms of moles) is

PV = nRT . size 12{ ital "PV"= ital "nRT"} {}

The numerical value of R size 12{R} {} in SI units is

R = N A k = 6 . 02 × 10 23 mol 1 1 . 38 × 10 23 J/K = 8 . 31 J / mol K . size 12{R=N rSub { size 8{A} } k= left (6 "." "02" times "10" rSup { size 8{"23"} } `"mol" rSup { size 8{ - 1} } right ) left (1 "." "38" times "10" rSup { size 8{ - "23"} } `"J/K" right )=8 "." "31"`J/"mol" cdot K} {}

In other units,

R = 1 . 99 cal/mol K R = 0 . 0821 L atm/mol K . alignl { stack { size 12{R=1 "." "99"" cal/mol" cdot K} {} #size 12{R"=0" "." "0821 L" cdot "atm/mol" cdot K "." } {} } } {}

You can use whichever value of R size 12{R} {} is most convenient for a particular problem.

Calculating number of moles: gas in a bike tire

How many moles of gas are in a bike tire with a volume of 2 . 00 × 10 3 m 3 ( 2 . 00 L ) , size 12{2 "." "00"´"10" rSup { size 8{ +- 3} } " m" rSup { size 8{3} } \( 2 "." "00 L" \) ,} {} a pressure of 7 . 00 × 10 5 Pa size 12{7 "." "00"´"10" rSup { size 8{5} } " Pa"} {} (a gauge pressure of just under 90 . 0 lb/in 2 size 12{"90" "." 0" lb/in" rSup { size 8{2} } } {} ), and at a temperature of 18 . 0 º C size 12{"18" "." 0°C} {} ?

Strategy

Identify the knowns and unknowns, and choose an equation to solve for the unknown. In this case, we solve the ideal gas law, PV = nRT size 12{ ital "PV"= ital "nRT"} {} , for the number of moles n size 12{n} {} .

Solution

1. Identify the knowns.

P = 7 . 00 × 10 5 Pa V = 2 . 00 × 10 3 m 3 T = 18 . 0 º C = 291 K R = 8 . 31 J/mol K alignl { stack { size 12{P=7 "." "00" times "10" rSup { size 8{5} } " Pa"} {} #V=2 "." "00" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } {} # T="18" "." 0°C="291 K" {} #R=8 "." "31"" J/mol" cdot K {} } } {}

2. Rearrange the equation to solve for n size 12{n} {} and substitute known values.

n = PV RT = 7 . 00 × 10 5 Pa 2 . 00 × 10 3 m 3 8 . 31 J/mol K 291 K = 0 . 579 mol alignl { stack { size 12{n= { { ital "PV"} over { ital "RT"} } = { { left (7 "." "00" times "10" rSup { size 8{5} } `"Pa" right ) left (2 "." 00 times "10" rSup { size 8{ - 3} } `m rSup { size 8{3} } right )} over { left (8 "." "31"`"J/mol" cdot K right ) left ("291"" K" right )} } } {} #" "=" 0" "." "579"`"mol" {} } } {}

Discussion

The most convenient choice for R size 12{R} {} in this case is 8 . 31 J/mol K, size 12{8 "." "31"" J/mol" cdot "K,"} {} because our known quantities are in SI units. The pressure and temperature are obtained from the initial conditions in [link] , but we would get the same answer if we used the final values.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask