<< Chapter < Page Chapter >> Page >

No charge is actually created or destroyed when charges are separated as we have been discussing. Rather, existing charges are moved about. In fact, in all situations the total amount of charge is always constant. This universally obeyed law of nature is called the law of conservation of charge    .

Law of conservation of charge

Total charge is constant in any process.

In more exotic situations, such as in particle accelerators, mass, Δ m size 12{Δm} {} , can be created from energy in the amount Δ m = E c 2 size 12{Δm= { {E} over {c rSup { size 8{2} } } } } {} . Sometimes, the created mass is charged, such as when an electron is created. Whenever a charged particle is created, another having an opposite charge is always created along with it, so that the total charge created is zero. Usually, the two particles are “matter-antimatter” counterparts. For example, an antielectron would usually be created at the same time as an electron. The antielectron has a positive charge (it is called a positron), and so the total charge created is zero. (See [link] .) All particles have antimatter counterparts with opposite signs. When matter and antimatter counterparts are brought together, they completely annihilate one another. By annihilate, we mean that the mass of the two particles is converted to energy E , again obeying the relationship Δ m = E c 2 size 12{Δm= { {E} over {c rSup { size 8{2} } } } } {} . Since the two particles have equal and opposite charge, the total charge is zero before and after the annihilation; thus, total charge is conserved.

Making connections: conservation laws

Only a limited number of physical quantities are universally conserved. Charge is one—energy, momentum, and angular momentum are others. Because they are conserved, these physical quantities are used to explain more phenomena and form more connections than other, less basic quantities. We find that conserved quantities give us great insight into the rules followed by nature and hints to the organization of nature. Discoveries of conservation laws have led to further discoveries, such as the weak nuclear force and the quark substructure of protons and other particles.

Here energy is shown by a vector. Initially electrostatic charge q tot is equal to zero. Now energy gets converted into matter and creates one electron and antielectron pair but final electrostatic charge is equal to zero so change in mass delta m is equal to two m e, which is equal to E divided by c square. (b) In this figure, Electron and antielectron are colliding with each other. The electrostatic charge q tot before collision is zero and after collision it will remain zero.
(a) When enough energy is present, it can be converted into matter. Here the matter created is an electron–antielectron pair. ( m e size 12{m rSub { size 8{e} } } {} is the electron’s mass.) The total charge before and after this event is zero. (b) When matter and antimatter collide, they annihilate each other; the total charge is conserved at zero before and after the annihilation.

The law of conservation of charge is absolute—it has never been observed to be violated. Charge, then, is a special physical quantity, joining a very short list of other quantities in nature that are always conserved. Other conserved quantities include energy, momentum, and angular momentum.

Phet explorations: balloons and static electricity

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

Balloons and Static Electricity

Section summary

  • There are only two types of charge, which we call positive and negative.
  • Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
  • The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by electrons.
  • The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
  • An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
  • The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude; the magnitude of this basic charge q e size 12{ lline q rSub { size 8{e} } rline} {} is
    q e = 1.60 × 10 19 C . size 12{ lline q rSub { size 8{e} } rline =1 "." "60" times "10" rSup { size 8{ - "19"} } C} {}
  • Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
  • Most often, existing charges are separated from neutral objects to obtain some net charge.
  • Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of electrons.
  • The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is created at the same time.

Conceptual questions

There are very large numbers of charged particles in most objects. Why, then, don’t most objects exhibit static electricity?

Got questions? Get instant answers now!

Why do most objects tend to contain nearly equal numbers of positive and negative charges?

Got questions? Get instant answers now!

Problems&Exercises

Common static electricity involves charges ranging from nanocoulombs to microcoulombs. (a) How many electrons are needed to form a charge of –2.00 nC (b) How many electrons must be removed from a neutral object to leave a net charge of 0.500 µ C ?

(a) 1.25 × 10 10

(b) 3.13 × 10 12

Got questions? Get instant answers now!

If 1 . 80 × 10 20 size 12{1 "." "80" times "10" rSup { size 8{"20"} } } {} electrons move through a pocket calculator during a full day’s operation, how many coulombs of charge moved through it?

Got questions? Get instant answers now!

To start a car engine, the car battery moves 3 . 75 × 10 21 size 12{3 "." "75" times "10" rSup { size 8{"21"} } } {} electrons through the starter motor. How many coulombs of charge were moved?

-600 C

Got questions? Get instant answers now!

A certain lightning bolt moves 40.0 C of charge. How many fundamental units of charge q e size 12{ lline q rSub { size 8{e} } rline} {} is this?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask