<< Chapter < Page Chapter >> Page >
v ( t ) = v max sin t T , size 12{v \( t \) = - v rSub { size 8{"max"} } "sin" left ( { {2π`t} over {T} } right )} {}

where v max = X / T = X k / m size 12{v rSub { size 8{"max"} } =2πX/T=X sqrt {k/m} } {} . The object has zero velocity at maximum displacement—for example, v = 0 size 12{v=0} {} when t = 0 size 12{t=0} {} , and at that time x = X size 12{x=X} {} . The minus sign in the first equation for v ( t ) size 12{v \( t \) } {} gives the correct direction for the velocity. Just after the start of the motion, for instance, the velocity is negative because the system is moving back toward the equilibrium point. Finally, we can get an expression for acceleration using Newton’s second law. [Then we have x ( t ) , v ( t ) , t , size 12{x \( t \) ,v \( t \) ,t} {} and a ( t ) size 12{a \( t \) } {} , the quantities needed for kinematics and a description of simple harmonic motion.] According to Newton’s second law, the acceleration is a = F / m = kx / m size 12{a=F/m= ital "kx"/m} {} . So, a ( t ) size 12{a \( t \) } {} is also a cosine function:

a ( t ) = kX m cos t T . size 12{a \( t \) = - { { ital "kX"} over {m} } " cos " { {2π t} over {T} } } {}

Hence, a ( t ) size 12{a \( t \) } {} is directly proportional to and in the opposite direction to x ( t ) .

[link] shows the simple harmonic motion of an object on a spring and presents graphs of x ( t ) , v ( t ), size 12{x \( t \) ,v \( t \) `} {} and a ( t ) size 12{`a \( t \) } {} versus time.

In the figure at the top there are ten springboards with objects of different mass values tied to them. This makes some springs highly compressed some as loosely stretched and some at equilibrium, which are shown as red spherical shaped. Alongside the figure there is a scale given for different amplitude values as x equal to positive X, zero and negative X. the upward and downward pointing arrows are shown with a few springboards.  In the second figure there are three graphs. The first graph shows distance covered in form of a sine wave starting from a point x units on positive y-axis. The height of the wave above x-axis is marked as amplitude. The gap between two consecutive crests is marked as T. Below first graph there is another graph showing velocity in form of a sine wave starting from the origin downward. In the third graph below the second one, acceleration is shown in the form of sine wave starting from x units on the negative y-axis upward. In the last figure three position of a spring are shown. The first position shows the unstretched length of a spring pendulum. A hand is holding the bob of the pendulum. In the second position the equilibrium position of the spring and bob is shown. This position is lower the first one. In the third case the up and down oscillations of the spring pendulum are shown. The bob is moving x units in upward and downward directions alternatively.
Graphs of x ( t ) , v ( t ) , size 12{x \( t \) ,v \( t \) `} {} and a ( t ) size 12{`a \( t \) } {} versus t size 12{t} {} for the motion of an object on a spring. The net force on the object can be described by Hooke’s law, and so the object undergoes simple harmonic motion. Note that the initial position has the vertical displacement at its maximum value X size 12{X} {} ; v size 12{v} {} is initially zero and then negative as the object moves down; and the initial acceleration is negative, back toward the equilibrium position and becomes zero at that point.

The most important point here is that these equations are mathematically straightforward and are valid for all simple harmonic motion. They are very useful in visualizing waves associated with simple harmonic motion, including visualizing how waves add with one another.

Suppose you pluck a banjo string. You hear a single note that starts out loud and slowly quiets over time. Describe what happens to the sound waves in terms of period, frequency and amplitude as the sound decreases in volume.

Frequency and period remain essentially unchanged. Only amplitude decreases as volume decreases.

Got questions? Get instant answers now!

A babysitter is pushing a child on a swing. At the point where the swing reaches x size 12{x} {} , where would the corresponding point on a wave of this motion be located?

x size 12{x} {} is the maximum deformation, which corresponds to the amplitude of the wave. The point on the wave would either be at the very top or the very bottom of the curve.

Got questions? Get instant answers now!

Phet explorations: masses and springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Masses and Springs

Section summary

  • Simple harmonic motion is oscillatory motion for a system that can be described only by Hooke’s law. Such a system is also called a simple harmonic oscillator.
  • Maximum displacement is the amplitude X size 12{X} {} . The period T size 12{T} {} and frequency f size 12{f} {} of a simple harmonic oscillator are given by

    T = m k size 12{T=2π sqrt { { {m} over {k} } } } {} and f = 1 k m , where m size 12{m} {} is the mass of the system.

  • Displacement in simple harmonic motion as a function of time is given by x ( t ) = X cos t T . size 12{x \( t \) =X"cos" { {2π`t} over {T} } } {}
  • The velocity is given by v ( t ) = v max sin t T , where v max = k / m X .
  • The acceleration is found to be a ( t ) = kX m cos t T . size 12{a \( t \) = - { { ital "kX"} over {m} } " cos " { {2π t} over {T} } } {}

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask