<< Chapter < Page Chapter >> Page >

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

Orbital data and kepler’s third law
Parent Satellite Average orbital radius r (km) Period T(y) r 3 / T 2 (km 3 / y 2 )
Earth Moon 3.84 × 10 5 size 12{3 "." "84" times "10" rSup { size 8{5} } } {} 0.07481 1 . 01 × 10 19 size 12{1 "." "01" times times "10" rSup { size 8{"18"} } } {}
Sun Mercury 5 . 79 × 10 7 size 12{5 "." "79" times "10" rSup { size 8{7} } } {} 0.2409 3 . 34 × 10 24 size 12{3 "." "34" times "10" rSup { size 8{"24"} } } {}
Venus 1 . 082 × 10 8 size 12{1 "." "082" times "10" rSup { size 8{8} } } {} 0.6150 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Earth 1 . 496 × 10 8 size 12{1 "." "496" times "10" rSup { size 8{8} } } {} 1.000 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Mars 2 . 279 × 10 8 size 12{2 "." "279" times "10" rSup { size 8{8} } } {} 1.881 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Jupiter 7 . 783 × 10 8 size 12{7 "." "783" times "10" rSup { size 8{8} } } {} 11.86 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Saturn 1 . 427 × 10 9 size 12{1 "." "427" times "10" rSup { size 8{9} } } {} 29.46 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Neptune 4 . 497 × 10 9 size 12{4 "." "497" times "10" rSup { size 8{9} } } {} 164.8 3 . 35 × 10 24 size 12{3 "." "35" times "10" rSup { size 8{"24"} } } {}
Pluto 5 . 90 × 10 9 size 12{5 "." "90" times "10" rSup { size 8{9} } } {} 248.3 3 . 33 × 10 24 size 12{3 "." "33" times "10" rSup { size 8{"24"} } } {}
Jupiter Io 4 . 22 × 10 5 size 12{4 "." "22" times "10" rSup { size 8{5} } } {} 0.00485 (1.77 d) 3 . 19 × 10 21 size 12{3 "." "19" times "10" rSup { size 8{"21"} } } {}
Europa 6 . 71 × 10 5 size 12{6 "." "71" times "10" rSup { size 8{5} } } {} 0.00972 (3.55 d) 3 . 20 × 10 21 size 12{3 "." "20" times "10" rSup { size 8{"21"} } } {}
Ganymede 1 . 07 × 10 6 size 12{1 "." "07" times "10" rSup { size 8{6} } } {} 0.0196 (7.16 d) 3 . 19 × 10 21 size 12{3 "." "19" times "10" rSup { size 8{"21"} } } {}
Callisto 1 . 88 × 10 6 size 12{1 "." "88" times "10" rSup { size 8{6} } } {} 0.0457 (16.19 d) 3 . 20 × 10 21 size 12{3 "." "20" times "10" rSup { size 8{"21"} } } {}

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth as shown in [link] (a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD. This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be a different rule for each heavenly body and a general lack of simplicity.

[link] (b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.

In figure a the paths of the different planets are shown in the forms of dotted concentric circles with the Earth at the center with its Moon. The Sun is also shown revolving around the Earth. Each planet is labeled with its name. On the planets Mercury, Venus, Mars, Jupiter and Saturn green colored epicycles are shown. In the figure b Copernican view of planet is shown. The Sun is shown at the center of the solar system. The planets are shown moving around the Sun.
(a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It is fully explained by a small number of laws of physics, including Newton’s universal law of gravitation.

Section summary

  • Kepler’s laws are stated for a small mass m size 12{m} {} orbiting a larger mass M size 12{M} {} in near-isolation. Kepler’s laws of planetary motion are then as follows:

    Kepler’s first law

    The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

    Kepler’s second law

    Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.

    Kepler’s third law

    The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average distances from the Sun:

    T 1  2 T 2  2 = r 1  3 r 2  3 , size 12{ { {T rSub { size 8{1} rSup { size 8{2} } } } over {T rSub { size 8{2} rSup { size 8{2} } } } } = { {r rSub { size 8{1} rSup { size 8{3} } } } over {r rSub { size 8{2} rSup { size 8{3} } } } } } {}

    where T size 12{m} {} is the period (time for one orbit) and r size 12{m} {} is the average radius of the orbit.

  • The period and radius of a satellite’s orbit about a larger body M size 12{m} {} are related by
    T 2 = 2 GM r 3 size 12{T rSup { size 8{2} } = { {4π rSup { size 8{2} } } over { ital "GM"} } r rSup { size 8{3} } } {}

    or

    r 3 T 2 = G 2 M . size 12{ { {r rSup { size 8{3} } } over {T rSup { size 8{2} } } } = { {G} over {4π rSup { size 8{2} } } } M} {}

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask