<< Chapter < Page Chapter >> Page >

Gamma decay

Gamma decay is the simplest form of nuclear decay—it is the emission of energetic photons by nuclei left in an excited state by some earlier process. Protons and neutrons in an excited nucleus are in higher orbitals, and they fall to lower levels by photon emission (analogous to electrons in excited atoms). Nuclear excited states have lifetimes typically of only about 10 14 size 12{"10" rSup { size 8{ - "14"} } } {} s, an indication of the great strength of the forces pulling the nucleons to lower states. The γ size 12{γ} {} decay equation is simply

Z A X N * Z A X N + γ 1 + γ 2 + ( γ decay ) size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rSup { size 8{*} } rightarrow "" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } +γ rSub { size 8{1} } +γ rSub { size 8{2} } + dotsaxis ``` \( γ`"decay" \) } {}

where the asterisk indicates the nucleus is in an excited state. There may be one or more γ s emitted, depending on how the nuclide de-excites. In radioactive decay, γ emission is common and is preceded by γ or β size 12{β} {} decay. For example, when 60 Co β size 12{β rSup { size 8{ - {}} } } {} decays, it most often leaves the daughter nucleus in an excited state, written 60 Ni* . Then the nickel nucleus quickly γ size 12{γ} {} decays by the emission of two penetrating γ size 12{γ} {} s:

60 Ni* 60 Ni + γ 1 + γ 2 . size 12{"" lSup { size 8{"60"} } "Ni" rSup { size 8{*} } rightarrow "" lSup { size 8{"60"} } "Ni"+γ rSub { size 8{1} } +γ rSub { size 8{2} } } {}

These are called cobalt γ size 12{γ} {} rays, although they come from nickel—they are used for cancer therapy, for example. It is again constructive to verify the conservation laws for gamma decay. Finally, since γ size 12{γ} {} decay does not change the nuclide to another species, it is not prominently featured in charts of decay series, such as that in [link] .

There are other types of nuclear decay, but they occur less commonly than α , β , and γ size 12{γ} {} decay. Spontaneous fission is the most important of the other forms of nuclear decay because of its applications in nuclear power and weapons. It is covered in the next chapter.

Section summary

  • When a parent nucleus decays, it produces a daughter nucleus following rules and conservation laws. There are three major types of nuclear decay, called alpha α , size 12{ left (α right ),} {} beta β , size 12{ left (β right ),} {} and gamma γ size 12{ left (γ right )} {} . The α size 12{α} {} decay equation is
    Z A X N Z 2 A 4 Y N 2 + 2 4 He 2 . size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rightarrow "" lSub { size 8{Z - 2} } lSup { size 8{A - 4} } Y rSub { size 8{N - 2} } +"" lSub { size 8{2} } lSup { size 8{4} } "He" rSub { size 8{2} } } {}
  • Nuclear decay releases an amount of energy E size 12{E} {} related to the mass destroyed Δ m by
    E = ( Δ m ) c 2 . size 12{E= \( Δm \) c rSup { size 8{2} } } {}
  • There are three forms of beta decay. The β size 12{β rSup { size 8{ - {}} } } {} decay equation is
    Z A X N Z + 1 A Y N 1 + β + ν ¯ e .
  • The β + decay equation is
    Z A X N Z 1 A Y N + 1 + β + + ν e .
  • The electron capture equation is
    Z A X N + e Z 1 A Y N + 1 + ν e .
  • β is an electron, β + size 12{β rSup { size 8{+{}} } } {} is an antielectron or positron, ν e size 12{v rSub { size 8{e} } } {} represents an electron’s neutrino, and ν ¯ e size 12{ {overline {ν rSub { size 8{e} } }} } {} is an electron’s antineutrino. In addition to all previously known conservation laws, two new ones arise— conservation of electron family number and conservation of the total number of nucleons. The γ decay equation is
    Z A X N * Z A X N + γ 1 + γ 2 + size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rSup { size 8{*} } rightarrow "" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } +γ rSub { size 8{1} } +γ rSub { size 8{2} } + dotsaxis } {}
    γ size 12{γ} {} is a high-energy photon originating in a nucleus.

Conceptual questions

Star Trek fans have often heard the term “antimatter drive.” Describe how you could use a magnetic field to trap antimatter, such as produced by nuclear decay, and later combine it with matter to produce energy. Be specific about the type of antimatter, the need for vacuum storage, and the fraction of matter converted into energy.

Got questions? Get instant answers now!

What conservation law requires an electron’s neutrino to be produced in electron capture? Note that the electron no longer exists after it is captured by the nucleus.

Got questions? Get instant answers now!

Neutrinos are experimentally determined to have an extremely small mass. Huge numbers of neutrinos are created in a supernova at the same time as massive amounts of light are first produced. When the 1987A supernova occurred in the Large Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light-years away from Earth, neutrinos from the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos and light be used to place limits on the mass of neutrinos?

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask