<< Chapter < Page Chapter >> Page >

Gamma decay

Gamma decay is the simplest form of nuclear decay—it is the emission of energetic photons by nuclei left in an excited state by some earlier process. Protons and neutrons in an excited nucleus are in higher orbitals, and they fall to lower levels by photon emission (analogous to electrons in excited atoms). Nuclear excited states have lifetimes typically of only about 10 14 size 12{"10" rSup { size 8{ - "14"} } } {} s, an indication of the great strength of the forces pulling the nucleons to lower states. The γ size 12{γ} {} decay equation is simply

Z A X N * Z A X N + γ 1 + γ 2 + ( γ decay ) size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rSup { size 8{*} } rightarrow "" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } +γ rSub { size 8{1} } +γ rSub { size 8{2} } + dotsaxis ``` \( γ`"decay" \) } {}

where the asterisk indicates the nucleus is in an excited state. There may be one or more γ s emitted, depending on how the nuclide de-excites. In radioactive decay, γ emission is common and is preceded by γ or β size 12{β} {} decay. For example, when 60 Co β size 12{β rSup { size 8{ - {}} } } {} decays, it most often leaves the daughter nucleus in an excited state, written 60 Ni* . Then the nickel nucleus quickly γ size 12{γ} {} decays by the emission of two penetrating γ size 12{γ} {} s:

60 Ni* 60 Ni + γ 1 + γ 2 . size 12{"" lSup { size 8{"60"} } "Ni" rSup { size 8{*} } rightarrow "" lSup { size 8{"60"} } "Ni"+γ rSub { size 8{1} } +γ rSub { size 8{2} } } {}

These are called cobalt γ size 12{γ} {} rays, although they come from nickel—they are used for cancer therapy, for example. It is again constructive to verify the conservation laws for gamma decay. Finally, since γ size 12{γ} {} decay does not change the nuclide to another species, it is not prominently featured in charts of decay series, such as that in [link] .

There are other types of nuclear decay, but they occur less commonly than α , β , and γ size 12{γ} {} decay. Spontaneous fission is the most important of the other forms of nuclear decay because of its applications in nuclear power and weapons. It is covered in the next chapter.

Section summary

  • When a parent nucleus decays, it produces a daughter nucleus following rules and conservation laws. There are three major types of nuclear decay, called alpha α , size 12{ left (α right ),} {} beta β , size 12{ left (β right ),} {} and gamma γ size 12{ left (γ right )} {} . The α size 12{α} {} decay equation is
    Z A X N Z 2 A 4 Y N 2 + 2 4 He 2 . size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rightarrow "" lSub { size 8{Z - 2} } lSup { size 8{A - 4} } Y rSub { size 8{N - 2} } +"" lSub { size 8{2} } lSup { size 8{4} } "He" rSub { size 8{2} } } {}
  • Nuclear decay releases an amount of energy E size 12{E} {} related to the mass destroyed Δ m by
    E = ( Δ m ) c 2 . size 12{E= \( Δm \) c rSup { size 8{2} } } {}
  • There are three forms of beta decay. The β size 12{β rSup { size 8{ - {}} } } {} decay equation is
    Z A X N Z + 1 A Y N 1 + β + ν ¯ e .
  • The β + decay equation is
    Z A X N Z 1 A Y N + 1 + β + + ν e .
  • The electron capture equation is
    Z A X N + e Z 1 A Y N + 1 + ν e .
  • β is an electron, β + size 12{β rSup { size 8{+{}} } } {} is an antielectron or positron, ν e size 12{v rSub { size 8{e} } } {} represents an electron’s neutrino, and ν ¯ e size 12{ {overline {ν rSub { size 8{e} } }} } {} is an electron’s antineutrino. In addition to all previously known conservation laws, two new ones arise— conservation of electron family number and conservation of the total number of nucleons. The γ decay equation is
    Z A X N * Z A X N + γ 1 + γ 2 + size 12{"" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } rSup { size 8{*} } rightarrow "" lSub { size 8{Z} } lSup { size 8{A} } X rSub { size 8{N} } +γ rSub { size 8{1} } +γ rSub { size 8{2} } + dotsaxis } {}
    γ size 12{γ} {} is a high-energy photon originating in a nucleus.

Conceptual questions

Star Trek fans have often heard the term “antimatter drive.” Describe how you could use a magnetic field to trap antimatter, such as produced by nuclear decay, and later combine it with matter to produce energy. Be specific about the type of antimatter, the need for vacuum storage, and the fraction of matter converted into energy.

Got questions? Get instant answers now!

What conservation law requires an electron’s neutrino to be produced in electron capture? Note that the electron no longer exists after it is captured by the nucleus.

Got questions? Get instant answers now!

Neutrinos are experimentally determined to have an extremely small mass. Huge numbers of neutrinos are created in a supernova at the same time as massive amounts of light are first produced. When the 1987A supernova occurred in the Large Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light-years away from Earth, neutrinos from the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos and light be used to place limits on the mass of neutrinos?

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask