<< Chapter < Page Chapter >> Page >
F S = 6 πRηv . size 12{F rSub { size 8{S} } =6πRηv} {}
Part a of the figure shows a sphere moving in a fluid. The fluid lines are shown to move toward the left. The viscous force on the sphere is also toward the left given by F v as shown by the arrow. The flow is shown as laminar as shown by linear bending lines. Part b of the figure shows a sphere moving with higher speed in a fluid. The fluid lines are shown to move toward the left. The viscous force on the sphere is also toward the left given by F v prime as shown by the arrow. The flow is shown as laminar above and below the sphere shown by linear lines of flow and turbulent on left of the sphere shown by curly lines of flow. Part c of the figure shows a sphere still moving with higher speed in a fluid. The fluid lines are shown to move toward the left at the edges of flow away from the sphere. The viscous force on the sphere is also toward the left given by F v double prime as shown by the arrow. The flow is turbulent all around the sphere as shown by curly lines of flow. The viscous drag F v double prime is shown to be still greater by longer length of arrows.
(a) Motion of this sphere to the right is equivalent to fluid flow to the left. Here the flow is laminar with N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than 1. There is a force, called viscous drag F V size 12{F rSub { size 8{V} } } {} , to the left on the ball due to the fluid’s viscosity. (b) At a higher speed, the flow becomes partially turbulent, creating a wake starting where the flow lines separate from the surface. Pressure in the wake is less than in front of the sphere, because fluid speed is less, creating a net force to the left F V size 12{ { {F}} sup { ' } rSub { size 8{V} } } {} that is significantly greater than for laminar flow. Here N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is greater than 10. (c) At much higher speeds, where N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , flow becomes turbulent everywhere on the surface and behind the sphere. Drag increases dramatically.

An interesting consequence of the increase in F V size 12{F rSub { size 8{V} } } {} with speed is that an object falling through a fluid will not continue to accelerate indefinitely (as it would if we neglect air resistance, for example). Instead, viscous drag increases, slowing acceleration, until a critical speed, called the terminal speed    , is reached and the acceleration of the object becomes zero. Once this happens, the object continues to fall at constant speed (the terminal speed). This is the case for particles of sand falling in the ocean, cells falling in a centrifuge, and sky divers falling through the air. [link] shows some of the factors that affect terminal speed. There is a viscous drag on the object that depends on the viscosity of the fluid and the size of the object. But there is also a buoyant force that depends on the density of the object relative to the fluid. Terminal speed will be greatest for low-viscosity fluids and objects with high densities and small sizes. Thus a skydiver falls more slowly with outspread limbs than when they are in a pike position—head first with hands at their side and legs together.

Take-home experiment: don’t lose your marbles

By measuring the terminal speed of a slowly moving sphere in a viscous fluid, one can find the viscosity of that fluid (at that temperature). It can be difficult to find small ball bearings around the house, but a small marble will do. Gather two or three fluids (syrup, motor oil, honey, olive oil, etc.) and a thick, tall clear glass or vase. Drop the marble into the center of the fluid and time its fall (after letting it drop a little to reach its terminal speed). Compare your values for the terminal speed and see if they are inversely proportional to the viscosities as listed in [link] . Does it make a difference if the marble is dropped near the side of the glass?

Knowledge of terminal speed is useful for estimating sedimentation rates of small particles. We know from watching mud settle out of dirty water that sedimentation is usually a slow process. Centrifuges are used to speed sedimentation by creating accelerated frames in which gravitational acceleration is replaced by centripetal acceleration, which can be much greater, increasing the terminal speed.

The figure shows the forces acting on an oval shaped object falling through a viscous fluid. An enlarged view of the object is shown toward the left to analyze the forces in detail. The weight of the object w acts vertically downward. The viscous drag F v and buoyant force F b acts vertically upward. The length of the object is given by L. The density of the object is given by rho obj and density of the fluid by rho fl.
There are three forces acting on an object falling through a viscous fluid: its weight w size 12{w} {} , the viscous drag F V size 12{F rSub { size 8{V} } } {} , and the buoyant force F B size 12{F rSub { size 8{B} } } {} .

Section summary

  • When an object moves in a fluid, there is a different form of the Reynolds number N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} which indicates whether flow is laminar or turbulent.
  • For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one, flow is laminar.
  • For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , flow is entirely turbulent.

Conceptual questions

What direction will a helium balloon move inside a car that is slowing down—toward the front or back? Explain your answer.

Got questions? Get instant answers now!

Will identical raindrops fall more rapidly in 5º C size 12{5 rSup { size 12{ circ } } C} {} air or 25º C size 12{"25" rSup { size 12{ circ } } C} {} air, neglecting any differences in air density? Explain your answer.

Got questions? Get instant answers now!

If you took two marbles of different sizes, what would you expect to observe about the relative magnitudes of their terminal velocities?

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask