<< Chapter < Page Chapter >> Page >

Calculating magnetic force: earth’s magnetic field on a charged glass rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link] .)

The effects of the Earth’s magnetic field on moving charges. Figure a shows a positive charge with a velocity vector due west, a magnetic field line B oriented due north, and a magnetic force vector F straight down. Figure b shows the right hand facing down, with the fingers pointing north with B, the thumb pointing west with v, and force down away from the hand.
A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation F = qvB sin θ size 12{F= ital "qvB""sin"θ} {} to find the force.

Solution

The magnetic force is

F = qvb sin θ . size 12{F= ital "qvb""sin"θ} {}

We see that sin θ = 1 size 12{"sin"θ=1} {} , since the angle between the velocity and the direction of the field is 90º size 12{"90" rSup { size 8{ circ } } } {} . Entering the other given quantities yields

F = 20 × 10 –9 C 10 m/s 5 × 10 –5 T = 1 × 10 –11 C m/s N C m/s = 1 × 10 –11 N. alignl { stack { size 12{F= left ("20" times "10" rSup { size 8{ - 9 } } `C right ) left ("10"`"m/s" right ) left (5 times "10" rSup { size 8{ - 5} } `T right )} {} #" "=1 times "10" rSup { size 8{ - "11"} } ` left (C cdot "m/s" right ) left ( { {N} over {C cdot "m/s"} } right )=1 times "10" rSup { size 8{ - "11"} } `N "." {} } } {}

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications .

Got questions? Get instant answers now!

Section summary

  • Magnetic fields exert a force on a moving charge q , the magnitude of which is
    F = qvB sin θ , size 12{F= ital "qvB""sin"θ} {}
    where θ size 12{θ} {} is the angle between the directions of v size 12{v} {} and B size 12{B} {} .
  • The SI unit for magnetic field strength B size 12{B} {} is the tesla (T), which is related to other units by
    1 T = 1 N C m/s = 1 N A m .
  • The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of v size 12{v} {} , the fingers in the direction of B size 12{B} {} , and a perpendicular to the palm points in the direction of F size 12{F} {} .
  • The force is perpendicular to the plane formed by v and B size 12{B} {} . Since the force is zero if v size 12{v} {} is parallel to B size 12{B} {} , charged particles often follow magnetic field lines rather than cross them.

Conceptual questions

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?

Got questions? Get instant answers now!

Problems&Exercises

What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link] ?

figure a shows magnetic field line direction symbols with solid circles labeled B out; a velocity vector points down; figure b shows B vectors pointing right and v vector pointing up; figure c shows B in and v to the right; figure d shows B vector pointing right and v vector pointing left; figure e shows B vectors up and v vector into the page; figure f shows B vectors pointing left and v vectors out of the page

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

Got questions? Get instant answers now!

Repeat [link] for a negative charge.

Got questions? Get instant answers now!

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in [link] , assuming it moves perpendicular to B ? size 12{B?} {}

Figure a shows the force vector pointing up and B out of the page. Figure b shows the F vector pointing up and the B vector pointing to the right. Figure c shows the F vector pointing to the left and the B vector pointing into the page.

(a) East (right)

(b) Into page

(c) South (down)

Got questions? Get instant answers now!

Repeat [link] for a positive charge.

Got questions? Get instant answers now!

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming B size 12{B} {} is perpendicular to v size 12{v} {} ?

Figure a shows a force vector pointing toward the left and a velocity vector pointing up. Figure b shows the force vector pointing into the page and the velocity vector pointing down. Figure c shows the force vector pointing up and the velocity vector pointing to the left.

(a) Into page

(b) West (left)

(c) Out of page

Got questions? Get instant answers now!

Repeat [link] for a negative charge.

Got questions? Get instant answers now!

What is the maximum force on an aluminum rod with a 0 . 100 -μC size 12{0 "." "100""-μC"} {} charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

7 . 50 × 10 7 N size 12{7 "." "50" times "10" rSup { size 8{ - 7} } " N"} {} perpendicular to both the magnetic field lines and the velocity

Got questions? Get instant answers now!

(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0 . 500 -μC size 12{0 "." "500""-μC"} {} charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the 8 . 00 × 10 5 -T size 12{8 "." "00" times "10" rSup { size 8{ - 5} } "-T"} {} magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

Got questions? Get instant answers now!

(a) A cosmic ray proton moving toward the Earth at 5.00 × 10 7 m/s size 12{5 "." "00" times "10" rSup { size 8{7} } `"m/s"} {} experiences a magnetic force of 1 . 70 × 10 16 N size 12{1 "." "70" times "10" rSup { size 8{ - "16"} } `N} {} . What is the strength of the magnetic field if there is a 45º size 12{"45" rSup { size 8{ circ } } } {} angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

(a) 3 . 01 × 10 5 T size 12{3 "." "01" times "10" rSup { size 8{ - 5} } " T"} {}

(b) This is slightly less then the magnetic field strength of 5 × 10 5 T size 12{5 times "10" rSup { size 8{ - 5} } `T} {} at the surface of the Earth, so it is consistent.

Got questions? Get instant answers now!

An electron moving at 4 . 00 × 10 3 m/s size 12{4 "." "00" times "10" rSup { size 8{3} } `"m/s"} {} in a 1.25-T magnetic field experiences a magnetic force of 1 . 40 × 10 16 N size 12{1 "." "40" times "10" rSup { size 8{ - "16"} } `N} {} . What angle does the velocity of the electron make with the magnetic field? There are two answers.

Got questions? Get instant answers now!

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1 . 00 × 10 12 N size 12{1 "." "00" times "10" rSup { size 8{ - "12"} } `N} {} . What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

(a) 6 . 67 × 10 10 C (taking the Earth’s field to be 5 . 00 × 10 5 T size 12{5 "." "00" times "10" rSup { size 8{ - 5} } " T"} {} )

(b) Less than typical static, therefore difficult

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask