<< Chapter < Page Chapter >> Page >

This same logic explains the behavior of gyroscopes. [link] shows the two forces acting on a spinning gyroscope. The torque produced is perpendicular to the angular momentum, thus the direction of the torque is changed, but not its magnitude. The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L size 12{L} {} . If the gyroscope is not spinning, it acquires angular momentum in the direction of the torque ( L = Δ L size 12{L=ΔL} {} ), and it rotates around a horizontal axis, falling over just as we would expect.

Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star. But Earth is slowly precessing (once in about 26,000 years) due to the torque of the Sun and the Moon on its nonspherical shape.

In figure a, the gyroscope is rotating in counter clockwise direction. The weight of the gyroscope is acting downward. The supportive force is acting at the base. The line of action of the weight and supportive force are different. The torque is acting along the radius of the horizontal circular part of gyroscope. In figure b, the two vectors L and L plus delta L are shown. The vectors start from a point at the bottom of the figure and terminate at two points on a horizontal dotted circle, directed in counter clockwise direction, at the top of the figure. Another vector delta L starts from the head of vector L and terminates at the head of vector L plus delta L.
As seen in figure (a), the forces on a spinning gyroscope are its weight and the supporting force from the stand. These forces create a horizontal torque on the gyroscope, which create a change in angular momentum Δ L size 12{L} {} that is also horizontal. In figure (b), Δ L size 12{L} {} and L size 12{L} {} add to produce a new angular momentum with the same magnitude, but different direction, so that the gyroscope precesses in the direction shown instead of falling over.

Rotational kinetic energy is associated with angular momentum? Does that mean that rotational kinetic energy is a vector?

No, energy is always a scalar whether motion is involved or not. No form of energy has a direction in space and you can see that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the direction of motion.

Got questions? Get instant answers now!

Section summary

  • Torque is perpendicular to the plane formed by r size 12{r} {} and F size 12{F} {} and is the direction your right thumb would point if you curled the fingers of your right hand in the direction of F size 12{F} {} . The direction of the torque is thus the same as that of the angular momentum it produces.
  • The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L size 12{L} {} . If the gyroscope is not spinning, it acquires angular momentum in the direction of the torque ( L = Δ L size 12{L=ΔL} {} ), and it rotates about a horizontal axis, falling over just as we would expect.
  • Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star.

Conceptual questions

While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips the cycle to the left and produces a left turn. Explain why this happens.

Got questions? Get instant answers now!

Gyroscopes used in guidance systems to indicate directions in space must have an angular momentum that does not change in direction. Yet they are often subjected to large forces and accelerations. How can the direction of their angular momentum be constant when they are accelerated?

Got questions? Get instant answers now!

Problem exercises

Integrated Concepts

The axis of Earth makes a 23.5° angle with a direction perpendicular to the plane of Earth’s orbit. As shown in [link] , this axis precesses, making one complete rotation in 25,780 y.

(a) Calculate the change in angular momentum in half this time.

(b) What is the average torque producing this change in angular momentum?

(c) If this torque were created by a single force (it is not) acting at the most effective point on the equator, what would its magnitude be?

In the figure, the Earth’s image is shown. There are two vectors inclined at an angle of twenty three point five degree to the vertical, starting from the centre of the Earth. At the heads of the two vectors there is a circular shape, directed in counter clockwise direction. An angular momentum vector, directed toward left, along its diameter, is shown. The plane of the Earth’s orbit is shown as a horizontal line through its center.
The Earth’s axis slowly precesses, always making an angle of 23.5° with the direction perpendicular to the plane of Earth’s orbit. The change in angular momentum for the two shown positions is quite large, although the magnitude L size 12{L} {} is unchanged.

(a) 5 . 64 × 10 33 kg m 2 /s size 12{5 "." "65" times "10" rSup { size 8{"33"} } `"kg" "." m rSup { size 8{2} } "/s"} {}

(b) 1 . 39 × 10 22 N m size 12{1 "." "39" times "10" rSup { size 8{"22"} } `N cdot m} {}

(c) 2 . 17 × 10 15 N size 12{2 "." "18" times "10" rSup { size 8{"15"} } `N} {}

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask