<< Chapter < Page Chapter >> Page >

Calculating energy from a kilogram of fissionable fuel

Calculate the amount of energy produced by the fission of 1.00 kg of 235 U size 12{ {} rSup { size 8{"235"} } U} {} , given the average fission reaction of 235 U size 12{ {} rSup { size 8{"235"} } U} {} produces 200 MeV.

Strategy

The total energy produced is the number of 235 U size 12{ {} rSup { size 8{"235"} } U} {} atoms times the given energy per 235 U size 12{ {} rSup { size 8{"235"} } U} {} fission. We should therefore find the number of 235 U size 12{ {} rSup { size 8{"235"} } U} {} atoms in 1.00 kg.

Solution

The number of 235 U atoms in 1.00 kg is Avogadro’s number times the number of moles. One mole of 235 U has a mass of 235.04 g; thus, there are ( 1000 g ) / ( 235.04 g/mol ) = 4.25 mol . The number of 235 U size 12{ {} rSup { size 8{"235"} } U} {} atoms is therefore,

4.25 mol 6.02 × 10 23 235 U/mol = 2 . 56 × 10 24 235 U . size 12{ left (4 "." "25"`"mol" right ) left (6 "." "02" times "10" rSup { size 8{"23"} } `"" lSup { size 8{"235"} } "U/mol" right )=2 "." "56" times "10" rSup { size 8{"24"} } `"" lSup { size 8{"235"} } U} {}

So the total energy released is

E = 2 . 56 × 10 24 235 U 200 MeV 235 U 1.60 × 10 13 J MeV = 8.21 × 10 13 J . alignl { stack { size 12{E= left (2 "." "56" times "10" rSup { size 8{"24"} } `"" lSup { size 8{"235"} } U right ) left ( { {"200"`"MeV"} over {"" lSup { size 8{"235"} } U} } right ) left ( { {1 "." "60" times "10" rSup { size 8{ - "13"} } `J} over {"MeV"} } right )} {} #" "=" 8" "." "20" times "10" rSup { size 8{"13"} } `J "." {} } } {}

Discussion

This is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000 gallons of gasoline. But, it is only one-fourth the energy produced by the fusion of a kilogram mixture of deuterium and tritium as seen in [link] . Even though each fission reaction yields about ten times the energy of a fusion reaction, the energy per kilogram of fission fuel is less, because there are far fewer moles per kilogram of the heavy nuclides. Fission fuel is also much more scarce than fusion fuel, and less than 1% of uranium (the 235 U ) size 12{ {} rSup { size 8{"235"} } U} {} is readily usable.

Got questions? Get instant answers now!

One nuclide already mentioned is 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} , which has a 24,120-y half-life and does not exist in nature. Plutonium-239 is manufactured from 238 U size 12{ {} rSup { size 8{"238"} } U} {} in reactors, and it provides an opportunity to utilize the other 99% of natural uranium as an energy source. The following reaction sequence, called breeding    , produces 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} . Breeding begins with neutron capture by 238 U size 12{ {} rSup { size 8{"238"} } U} {} :

238 U + n 239 U + γ .

Uranium-239 then β decays:

239 U 239 Np + β + v e ( t 1/2 = 23 min) .

Neptunium-239 also β decays:

239 Np 239 Pu + β + v e ( t 1/2 = 2 . 4 d ).

Plutonium-239 builds up in reactor fuel at a rate that depends on the probability of neutron capture by 238 U size 12{ {} rSup { size 8{"238"} } U} {} (all reactor fuel contains more 238 U size 12{ {} rSup { size 8{"238"} } U} {} than 235 U size 12{ {} rSup { size 8{"235"} } U} {} ). Reactors designed specifically to make plutonium are called breeder reactors    . They seem to be inherently more hazardous than conventional reactors, but it remains unknown whether their hazards can be made economically acceptable. The four reactors at Chernobyl, including the one that was destroyed, were built to breed plutonium and produce electricity. These reactors had a design that was significantly different from the pressurized water reactor illustrated above.

Plutonium-239 has advantages over 235 U size 12{ {} rSup { size 8{"235"} } U} {} as a reactor fuel — it produces more neutrons per fission on average, and it is easier for a thermal neutron to cause it to fission. It is also chemically different from uranium, so it is inherently easier to separate from uranium ore. This means 239 Pu size 12{ {} rSup { size 8{"239"} } ital "Pu"} {} has a particularly small critical mass, an advantage for nuclear weapons.

Phet explorations: nuclear fission

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor!

Nuclear Fission

Section summary

  • Nuclear fission is a reaction in which a nucleus is split.
  • Fission releases energy when heavy nuclei are split into medium-mass nuclei.
  • Self-sustained fission is possible, because neutron-induced fission also produces neutrons that can induce other fissions, n + A X FF 1 + FF 2 + xn , where FF 1 size 12{"FF" rSub { size 8{1} } } {} and FF 2 size 12{"FF" rSub { size 8{2} } } {} are the two daughter nuclei, or fission fragments, and x is the number of neutrons produced.
  • A minimum mass, called the critical mass, should be present to achieve criticality.
  • More than a critical mass can produce supercriticality.
  • The production of new or different isotopes (especially 239 Pu ) by nuclear transformation is called breeding, and reactors designed for this purpose are called breeder reactors.

Questions & Answers

What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask