<< Chapter < Page Chapter >> Page >

Solution for (a)

  1. Identify the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg size 12{m=9 "." "11" times "10" rSup { size 8{ - "31"} } `"kg"} {}
  2. Identify the unknown. KE rel size 12{"KE" rSub { size 8{"rel"} } } {}
  3. Choose the appropriate equation. KE rel = γ 1 mc 2 size 12{"KE" rSub { size 8{"rel"} } = left (γ - 1 right ) ital "mc" rSup { size 8{2} } } {}
  4. Plug the knowns into the equation.

    First calculate γ size 12{γ} {} . We will carry extra digits because this is an intermediate calculation.

    γ = 1 1 v 2 c 2 = 1 1 ( 0 . 990 c ) 2 c 2 = 1 1 ( 0 . 990 ) 2 = 7 . 0888 alignl { stack { size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } } {} #= { {1} over { sqrt {1 - { { \( 0 "." "990" ital " c" \) rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } {} # - { {1} over { sqrt {1 - \( 0 "." "990" \) rSup { size 8{2} } } } } {} #=7 "." "0888" {} } } {}

    Next, we use this value to calculate the kinetic energy.

    KE rel = ( γ 1 ) mc 2 = ( 7.0888 1 ) ( 9.11 × 10 31 kg ) ( 3.00 × 10 8 m/s ) 2 = 4.99 × 10 –13 J
  5. Convert units.
    KE rel = ( 4.99 × 10 –13 J ) 1 MeV 1.60 × 10 13 J = 3.12 MeV alignl { stack { size 12{"KE" rSub { size 8{"rel"} } = \( 4 "." "99" times "10" rSup { size 8{"-13"} } " J" \) left ( { {"1 MeV"} over {1 "." "60" times "10" rSup { size 8{ - "13"} } " J"} } right )} {} #=3 "." "12"" MeV" {} } } {}

Solution for (b)

  1. List the knowns. v = 0 . 990 c size 12{v=0 "." "990"c} {} ; m = 9 . 11 × 10 31 kg
  2. List the unknown. KE class
  3. Choose the appropriate equation. KE class = 1 2 mv 2
  4. Plug the knowns into the equation.
    KE class = 1 2 mv 2 = 1 2 ( 9.00 × 10 31 kg ) ( 0.990 ) 2 ( 3.00 × 10 8 m/s ) 2 = 4.02 × 10 14 J
  5. Convert units.
    KE class = 4.02 × 10 14 J 1 MeV 1.60 × 10 13 J = 0.251 MeV

Discussion

As might be expected, since the velocity is 99.0% of the speed of light, the classical kinetic energy is significantly off from the correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact, KE rel /KE class = 12 . 4 size 12{"KE" rSub { size 8{"rel"} } "/KE" rSub { size 8{"class"} } ="12" "." 4} {} here. This is some indication of how difficult it is to get a mass moving close to the speed of light. Much more energy is required than predicted classically. Some people interpret this extra energy as going into increasing the mass of the system, but, as discussed in Relativistic Momentum , this cannot be verified unambiguously. What is certain is that ever-increasing amounts of energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is a very small amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can accelerate electrons to over 50 × 10 9 eV = 50,000 MeV size 12{"50" times "10" rSup { size 8{9} } "eV"="50,000"`"MeV"} {} .

Is there any point in getting v size 12{v} {} a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing this. The energy that goes into a high-velocity mass can be converted to any other form, including into entirely new masses. (See [link] .) Most of what we know about the substructure of matter and the collection of exotic short-lived particles in nature has been learned this way. Particles are accelerated to extremely relativistic energies and made to collide with other particles, producing totally new species of particles. Patterns in the characteristics of these previously unknown particles hint at a basic substructure for all matter. These particles and some of their characteristics will be covered in Particle Physics .

An aerial view of the Fermi National Accelerator Laboratory. The accelerator has two large, ring shaped structures. There are circular ponds near the rings.
The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that accelerated protons and antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings were built to dissipate waste heat. This accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)

Relativistic energy and momentum

We know classically that kinetic energy and momentum are related to each other, since

KE class = p 2 2 m = ( mv ) 2 2 m = 1 2 mv 2 .

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This produces

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask