<< Chapter < Page Chapter >> Page >

Relating E size 12{E} {} -field and B size 12{B} {} -field strengths

There is a relationship between the E size 12{E} {} - and B size 12{B} {} -field strengths in an electromagnetic wave. This can be understood by again considering the antenna just described. The stronger the E size 12{E} {} -field created by a separation of charge, the greater the current and, hence, the greater the B size 12{B} {} -field created.

Since current is directly proportional to voltage (Ohm’s law) and voltage is directly proportional to E size 12{E} {} -field strength, the two should be directly proportional. It can be shown that the magnitudes of the fields do have a constant ratio, equal to the speed of light. That is,

E B = c size 12{ { {E} over {B} } =c} {}

is the ratio of E size 12{E} {} -field strength to B size 12{B} {} -field strength in any electromagnetic wave. This is true at all times and at all locations in space. A simple and elegant result.

Calculating B size 12{B} {} -field strength in an electromagnetic wave

What is the maximum strength of the B size 12{B} {} -field in an electromagnetic wave that has a maximum E size 12{E} {} -field strength of 1000 V/m size 12{"1000" {V} slash {m} } {} ?

Strategy

To find the B size 12{B} {} -field strength, we rearrange the above equation to solve for B size 12{B} {} , yielding

B = E c . size 12{B= { {E} over {c} } } {}

Solution

We are given E size 12{E} {} , and c size 12{c} {} is the speed of light. Entering these into the expression for B size 12{B} {} yields

B = 1000 V/m 3 . 00 × 10 8 m/s = 3 . 33 × 10 - 6 T , size 12{B = { {"1000 V/m"} over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 3" "." "33" times "10" rSup { size 8{ +- 6} } " T"} {}

Where T stands for Tesla, a measure of magnetic field strength.

Discussion

The B size 12{B} {} -field strength is less than a tenth of the Earth’s admittedly weak magnetic field. This means that a relatively strong electric field of 1000 V/m is accompanied by a relatively weak magnetic field. Note that as this wave spreads out, say with distance from an antenna, its field strengths become progressively weaker.

Got questions? Get instant answers now!

The result of this example is consistent with the statement made in the module Maxwell’s Equations: Electromagnetic Waves Predicted and Observed that changing electric fields create relatively weak magnetic fields. They can be detected in electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

Take-home experiment: antennas

For your TV or radio at home, identify the antenna, and sketch its shape. If you don’t have cable, you might have an outdoor or indoor TV antenna. Estimate its size. If the TV signal is between 60 and 216 MHz for basic channels, then what is the wavelength of those EM waves?

Try tuning the radio and note the small range of frequencies at which a reasonable signal for that station is received. (This is easier with digital readout.) If you have a car with a radio and extendable antenna, note the quality of reception as the length of the antenna is changed.

Phet explorations: radio waves and electromagnetic fields

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Radio Waves and Electromagnetic Fields

Section summary

  • Electromagnetic waves are created by oscillating charges (which radiate whenever accelerated) and have the same frequency as the oscillation.
  • Since the electric and magnetic fields in most electromagnetic waves are perpendicular to the direction in which the wave moves, it is ordinarily a transverse wave.
  • The strengths of the electric and magnetic parts of the wave are related by
    E B = c , size 12{ { {E} over {B} } = ital " c"} {}

    which implies that the magnetic field B size 12{B} {} is very weak relative to the electric field E size 12{E} {} .

Conceptual questions

The direction of the electric field shown in each part of [link] is that produced by the charge distribution in the wire. Justify the direction shown in each part, using the Coulomb force law and the definition of E = F / q size 12{E= {F} slash {q} } {} , where q size 12{q} {} is a positive test charge.

Got questions? Get instant answers now!

Is the direction of the magnetic field shown in [link] (a) consistent with the right-hand rule for current (RHR-2) in the direction shown in the figure?

Got questions? Get instant answers now!

Why is the direction of the current shown in each part of [link] opposite to the electric field produced by the wire’s charge separation?

Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the wire? Explain.

Part a of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching long straight wires.
Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the loop? Explain.

Part a of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching a wire loop.
Got questions? Get instant answers now!

Should the straight wire antenna of a radio be vertical or horizontal to best receive radio waves broadcast by a vertical transmitter antenna? How should a loop antenna be aligned to best receive the signals? (Note that the direction of the loop that produces the best reception can be used to determine the location of the source. It is used for that purpose in tracking tagged animals in nature studies, for example.)

Got questions? Get instant answers now!

Under what conditions might wires in a DC circuit emit electromagnetic waves?

Got questions? Get instant answers now!

Give an example of interference of electromagnetic waves.

Got questions? Get instant answers now!

[link] shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna system that broadcasts preferentially in certain directions? Explain.

The picture shows an overhead view of a radio broadcast antenna sending signals in the form of waves. Two waves are shown in the diagram with concentric circular wave fonts. The crest and trough are marked as bold and dashed circles respectively. The points where the bold circles of the two different waves meet are marked as points of constructive interference. Arrows point outward from the antenna, joining these points. These arrows show the directions of constructive interference.
An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.
Got questions? Get instant answers now!

Can an antenna be any length? Explain your answer.

Got questions? Get instant answers now!

Problems&Exercises

What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5 . 00 × 10 4 T size 12{5 "." "00"´"10" rSup { size 8{-4} } " T"} {} (about 10 times the Earth’s)?

150 kV/m

Got questions? Get instant answers now!

The maximum magnetic field strength of an electromagnetic field is 5 × 10 6 T size 12{5 times "10" rSup { size 8{ - 6} } T} {} . Calculate the maximum electric field strength if the wave is traveling in a medium in which the speed of the wave is 0.75 c size 12{c} {} .

Got questions? Get instant answers now!

Verify the units obtained for magnetic field strength B in [link] (using the equation B = E c ) are in fact teslas (T).

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask