<< Chapter < Page Chapter >> Page >
  • Describe the electric and magnetic waves as they move out from a source, such as an AC generator.
  • Explain the mathematical relationship between the magnetic field strength and the electrical field strength.
  • Calculate the maximum strength of the magnetic field in an electromagnetic wave, given the maximum electric field strength.

We can get a good understanding of electromagnetic waves    (EM) by considering how they are produced. Whenever a current varies, associated electric and magnetic fields vary, moving out from the source like waves. Perhaps the easiest situation to visualize is a varying current in a long straight wire, produced by an AC generator at its center, as illustrated in [link] .

A long straight gray wire with an A C generator at its center, functioning as a broadcast antenna for electromagnetic waves, is shown. The wave distributions at four different times are shown in four different parts. Part a of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals zero. The bottom part of the antenna is positive and the upper end of the antenna is negative. An electric field E acting upward is shown by an upward arrow. Part b of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by four. The antenna has no polarity marked and a wave is shown to emerge from the A C source. An electric field E acting upward as shown by an upward arrow. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis. Part c of the diagram shows a long straight gray wire with an A C generator at its center. The time is marked t equals capital T divided by two. The bottom part of the antenna is negative and the upper end of the antenna is positive and a wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown below the horizontal axis and a quarter portion of the wave is above the horizontal axis. Part d of the diagram shows a long straight gray wire with an AC generator at its center. The time is marked t equals capital T. The bottom part of the antenna is positive and the upper end of the antenna is negative. A wave is shown to emerge from the A C source. The electric field E propagates away from the antenna at the speed of light, forming part of the electromagnetic wave from the A C source. A quarter portion of the wave is shown above the horizontal axis followed by a half wave below the horizontal axis and then again a quarter of a wave above the horizontal axis.
This long straight gray wire with an AC generator at its center becomes a broadcast antenna for electromagnetic waves. Shown here are the charge distributions at four different times. The electric field ( E size 12{E} {} ) propagates away from the antenna at the speed of light, forming part of an electromagnetic wave.

The electric field    ( E size 12{E} {} ) shown surrounding the wire is produced by the charge distribution on the wire. Both the E size 12{E} {} and the charge distribution vary as the current changes. The changing field propagates outward at the speed of light.

There is an associated magnetic field    ( B size 12{B} {} ) which propagates outward as well (see [link] ). The electric and magnetic fields are closely related and propagate as an electromagnetic wave. This is what happens in broadcast antennae such as those in radio and TV stations.

Closer examination of the one complete cycle shown in [link] reveals the periodic nature of the generator-driven charges oscillating up and down in the antenna and the electric field produced. At time t = 0 size 12{t=0} {} , there is the maximum separation of charge, with negative charges at the top and positive charges at the bottom, producing the maximum magnitude of the electric field (or E size 12{E} {} -field) in the upward direction. One-fourth of a cycle later, there is no charge separation and the field next to the antenna is zero, while the maximum E size 12{E} {} -field has moved away at speed c size 12{c} {} .

As the process continues, the charge separation reverses and the field reaches its maximum downward value, returns to zero, and rises to its maximum upward value at the end of one complete cycle. The outgoing wave has an amplitude    proportional to the maximum separation of charge. Its wavelength     λ size 12{ left (λ right )} {} is proportional to the period of the oscillation and, hence, is smaller for short periods or high frequencies. (As usual, wavelength and frequency     f size 12{ left (f right )} {} are inversely proportional.)

Electric and magnetic waves: moving together

Following Ampere’s law, current in the antenna produces a magnetic field, as shown in [link] . The relationship between E size 12{E} {} and B size 12{B} {} is shown at one instant in [link] (a). As the current varies, the magnetic field varies in magnitude and direction.

Part a of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The antenna has a current I flowing vertically upward. The bottom end of the antenna is negative and the upper end of the antenna is positive. An electric field is shown to act vertically downward. The magnetic field lines B produced in the antenna are circular in direction around the wire. Part b of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The electric field E and magnetic field B near the wire are shown perpendicular to each other. Part c of the diagram shows a long straight gray wire with an A C generator at its center, functioning as a broadcast antenna. The current is shown to flow in the antenna. The magnetic field varies with the current and propagates away from the antenna as a sine wave in the horizontal plane. The vibrations in the wave are marked as small arrows along the wave.
(a) The current in the antenna produces the circular magnetic field lines. The current ( I size 12{I} {} ) produces the separation of charge along the wire, which in turn creates the electric field as shown. (b) The electric and magnetic fields ( E size 12{E} {} and B size 12{B} {} ) near the wire are perpendicular; they are shown here for one point in space. (c) The magnetic field varies with current and propagates away from the antenna at the speed of light.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask