<< Chapter < Page Chapter >> Page >
0 = Q W , size 12{0=Q - W} {}

so that

W = Q . size 12{W=Q} {}

Thus the net work done by the system equals the net heat transfer into the system, or

W = Q h Q c (cyclical process), size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {}

just as shown schematically in [link] (b). The problem is that in all processes, there is some heat transfer Q c size 12{Q rSub { size 8{c} } } {} to the environment—and usually a very significant amount at that.

In the conversion of energy to work, we are always faced with the problem of getting less out than we put in. We define conversion efficiency Eff size 12{ ital "Eff"} {} to be the ratio of useful work output to the energy input (or, in other words, the ratio of what we get to what we spend). In that spirit, we define the efficiency of a heat engine to be its net work output W size 12{W} {} divided by heat transfer to the engine Q h size 12{Q rSub { size 8{h} } } {} ; that is,

Eff = W Q h . size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {}

Since W = Q h Q c size 12{W=Q rSub { size 8{h} } -Q rSub { size 8{c} } } {} in a cyclical process, we can also express this as

Eff = Q h Q c Q h = 1 Q c Q h (cyclical process), size 12{ ital "Eff"= { {Q rSub { size 8{h} } - Q rSub { size 8{c} } } over {Q rSub { size 8{h} } } } =1 - { {Q rSub { size 8{c} } } over {Q rSub { size 8{h} } } } } {}

making it clear that an efficiency of 1, or 100%, is possible only if there is no heat transfer to the environment ( Q c = 0 size 12{Q rSub { size 8{c} } =0} {} ). Note that all Q size 12{Q} {} s are positive. The direction of heat transfer is indicated by a plus or minus sign. For example, Q c size 12{Q rSub { size 8{c} } } {} is out of the system and so is preceded by a minus sign.

Daily work done by a coal-fired power station, its efficiency and carbon dioxide emissions

A coal-fired power station is a huge heat engine. It uses heat transfer from burning coal to do work to turn turbines, which are used to generate electricity. In a single day, a large coal power station has 2 . 50 × 10 14 J size 12{2 "." "50" times "10" rSup { size 8{"14"} } J} {} of heat transfer from coal and 1 . 48 × 10 14 J size 12{1 "." "48" times "10" rSup { size 8{"14"} } J} {} of heat transfer into the environment. (a) What is the work done by the power station? (b) What is the efficiency of the power station? (c) In the combustion process, the following chemical reaction occurs: C + O 2 CO 2 size 12{C+O rSub { size 8{2} } rightarrow "CO" rSub { size 8{2} } } {} . This implies that every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of carbon dioxide into the atmosphere. Assuming that 1 kg of coal can provide 2 . 5 × 10 6 J size 12{2 "." 5 times "10" rSup { size 8{6} } J} {} of heat transfer upon combustion, how much CO 2 size 12{"CO" rSub { size 8{2} } } {} is emitted per day by this power plant?

Strategy for (a)

We can use W = Q h Q c size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {} to find the work output W size 12{W} {} , assuming a cyclical process is used in the power station. In this process, water is boiled under pressure to form high-temperature steam, which is used to run steam turbine-generators, and then condensed back to water to start the cycle again.

Solution for (a)

Work output is given by:

W = Q h Q c . size 12{W=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {}

Substituting the given values:

W = 2 . 50 × 10 14 J 1 . 48 × 10 14 J = 1 . 02 × 10 14 J . alignl { stack { size 12{W=2 "." "50"´"10" rSup { size 8{"14"} } " J" +- 1 "." "48"´"10" rSup { size 8{"14"} } " J"} {} #=1 "." "02"´"10" rSup { size 8{"14"} } " J" "." {} } } {}

Strategy for (b)

The efficiency can be calculated with Eff = W Q h size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {} since Q h size 12{Q rSub { size 8{h} } } {} is given and work W size 12{W} {} was found in the first part of this example.

Solution for (b)

Efficiency is given by: Eff = W Q h size 12{ ital "Eff"= { {W} over {Q rSub { size 8{h} } } } } {} . The work W was just found to be 1.02 × 10 14 J , and Q h size 12{Q rSub { size 8{h} } } {} is given, so the efficiency is

Eff = 1 . 02 × 10 14 J 2 . 50 × 10 14 J = 0 . 408 , or  40 . 8% alignl { stack { size 12{ ital "Eff"= { {1 "." "02" times "10" rSup { size 8{"14"} } J} over {2 "." "50" times "10" rSup { size 8{"14"} } J} } } {} #=0 "." "408"", or ""40" "." 8% {} } } {}

Strategy for (c)

The daily consumption of coal is calculated using the information that each day there is 2 . 50 × 10 14 J size 12{2 "." "50"´"10" rSup { size 8{"14"} } " J"} {} of heat transfer from coal. In the combustion process, we have C + O 2 CO 2 size 12{C+O rSub { size 8{2} } rightarrow "CO" rSub { size 8{2} } } {} . So every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of CO 2 size 12{"CO" rSub { size 8{2} } } {} into the atmosphere.

Solution for (c)

The daily coal consumption is

2 . 50 × 10 14 J 2 . 50 × 10 6 J/kg = 1 . 0 × 10 8 kg. size 12{ { {2 "." "50"´"10" rSup { size 8{"14"} } " J"} over {2 "." "50"´"10" rSup { size 8{6} } " J/kg"} } =1 "." 0´"10" rSup { size 8{7} } " J/kg"} {}

Assuming that the coal is pure and that all the coal goes toward producing carbon dioxide, the carbon dioxide produced per day is

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask