<< Chapter < Page Chapter >> Page >

The law of refraction

n 1 sin θ 1 = n 2 sin θ 2 size 12{n rSub { size 8{1} } "sin"θ rSub { size 8{1} } =n rSub { size 8{2} } "sin"θ rSub { size 8{2} } } {}

Take-home experiment: a broken pencil

A classic observation of refraction occurs when a pencil is placed in a glass half filled with water. Do this and observe the shape of the pencil when you look at the pencil sideways, that is, through air, glass, water. Explain your observations. Draw ray diagrams for the situation.

Determine the index of refraction from refraction data

Find the index of refraction for medium 2 in [link] (a), assuming medium 1 is air and given the incident angle is 30 . size 12{"30" "." 0°} {} and the angle of refraction is 22 . size 12{"22" "." 0°} {} .

Strategy

The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus n 1 = 1 . 00 size 12{n rSub { size 8{1} } =1 "." "00"} {} here. From the given information, θ 1 = 30 . size 12{q rSub { size 8{1} } ="30" "." 0°} {} and θ 2 = 22 . size 12{q rSub { size 8{2} } ="22" "." 0°} {} . With this information, the only unknown in Snell’s law is n 2 size 12{n rSub { size 8{2} } } {} , so that it can be used to find this unknown.

Solution

Snell’s law is

n 1 sin θ 1 = n 2 sin θ 2 . size 12{n rSub { size 8{1} } "sin"θ rSub { size 8{1} } =n rSub { size 8{2} } "sin"θ rSub { size 8{2} } } {}

Rearranging to isolate n 2 size 12{n rSub { size 8{2} } } {} gives

n 2 = n 1 sin θ 1 sin θ 2 . size 12{n rSub { size 8{2} } =n rSub { size 8{1} } { {"sin"θ rSub { size 8{1} } } over {"sin"θ rSub { size 8{2} } } } } {}

Entering known values,

n 2 = 1 . 00 sin 30 . sin 22 . = 0 . 500 0 . 375 = 1.33. alignl { stack { size 12{n rSub { size 8{2} } =1 "." "00" { {"sin""30" "." 0°} over {"sin""22" "." 0°} } = { {0 "." "500"} over {0 "." "375"} } } {} #=1 "." "33" "." {} } } {}

Discussion

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as when a ray passes from water to glass. Today we can verify that the index of refraction is related to the speed of light in a medium by measuring that speed directly.

Got questions? Get instant answers now!

A larger change in direction

Suppose that in a situation like that in [link] , light goes from air to diamond and that the incident angle is 30 . size 12{"30" "." 0°} {} . Calculate the angle of refraction θ 2 size 12{q rSub { size 8{2} } } {} in the diamond.

Strategy

Again the index of refraction for air is taken to be n 1 = 1 . 00 size 12{n rSub { size 8{1} } =1 "." "00"} {} , and we are given θ 1 = 30 . size 12{q rSub { size 8{1} } ="30" "." 0°} {} . We can look up the index of refraction for diamond in [link] , finding n 2 = 2 . 419 size 12{n rSub { size 8{2} } =2 "." "419"} {} . The only unknown in Snell’s law is θ 2 size 12{q rSub { size 8{2} } } {} , which we wish to determine.

Solution

Solving Snell’s law for sin θ 2 size 12{q rSub { size 8{2} } } {} yields

sin θ 2 = n 1 n 2 sin θ 1 . size 12{"sin"θ rSub { size 8{2} } = { {n rSub { size 8{1} } } over {n rSub { size 8{2} } } } "sin"θ rSub { size 8{1} } } {}

Entering known values,

sin θ 2 = 1 . 00 2 . 419 sin 30 . = ( 0 . 413 ) ( 0 . 500 ) = 0 . 207 . size 12{"sin"q rSub { size 8{2} } = { {1 "." "00"} over {2 "." "419"} } "sin""30" "." 0"°=" left (0 "." "413" right ) left (0 "." "500" right )=0 "." "207"} {}

The angle is thus

θ 2 = sin 1 0 . 207 = 11 . . size 12{θ rSub { size 8{2} } ="sin" rSup { size 8{ - 1} } 0 "." "207"="11" "." 9°} {}

Discussion

For the same 30º angle of incidence, the angle of refraction in diamond is significantly smaller than in water ( 11.9º rather than 22º —see the preceding example). This means there is a larger change in direction in diamond. The cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the greater the effect on the direction of the ray.

Got questions? Get instant answers now!

Section summary

  • The changing of a light ray’s direction when it passes through variations in matter is called refraction.
  • The speed of light in vacuum c = 2 . 9972458 × 10 8 m/s 3 . 00 × 10 8 m/s . size 12{c=2 "." "9972458" times "10" rSup { size 8{8} } " m/s" approx 3 "." "00" times "10" rSup { size 8{8} } " m/s"} {}
  • Index of refraction n = c v size 12{n= { {c} over {v} } } {} , where v size 12{v} {} is the speed of light in the material, c size 12{c} {} is the speed of light in vacuum, and n size 12{n} {} is the index of refraction.
  • Snell’s law, the law of refraction, is stated in equation form as n 1 sin θ 1 = n 2 sin θ 2 size 12{n rSub { size 8{1} } "sin"θ rSub { size 8{1} } =n rSub { size 8{2} } "sin"θ rSub { size 8{2} } } {} .

Conceptual questions

Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe how this occurs in a specific situation, such as light interacting with crushed ice.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask