<< Chapter < Page Chapter >> Page >

The body provides us with an excellent indication that many thermodynamic processes are irreversible . An irreversible process can go in one direction but not the reverse, under a given set of conditions. For example, although body fat can be converted to do work and produce heat transfer, work done on the body and heat transfer into it cannot be converted to body fat. Otherwise, we could skip lunch by sunning ourselves or by walking down stairs. Another example of an irreversible thermodynamic process is photosynthesis. This process is the intake of one form of energy—light—by plants and its conversion to chemical potential energy. Both applications of the first law of thermodynamics are illustrated in [link] . One great advantage of conservation laws such as the first law of thermodynamics is that they accurately describe the beginning and ending points of complex processes, such as metabolism and photosynthesis, without regard to the complications in between. [link] presents a summary of terms relevant to the first law of thermodynamics.

Part a of the figure is a pictorial representation of metabolism in a human body. The food is shown to enter the body as shown by a bold arrow toward the body. Work W and heat Q leave the body as shown by bold arrows pointing outward from the body. Delta U is shown as the stored food energy. Part b of the figure shows the metabolism in plants .The heat from the sunlight is shown to fall on a plant represented as Q in. The heat given out by the plant is shown as Q out by an arrow pointing away from the plant.
(a) The first law of thermodynamics applied to metabolism. Heat transferred out of the body ( Q size 12{Q} {} ) and work done by the body ( W size 12{W} {} ) remove internal energy, while food intake replaces it. (Food intake may be considered as work done on the body.) (b) Plants convert part of the radiant heat transfer in sunlight to stored chemical energy, a process called photosynthesis.
Summary of terms for the first law of thermodynamics, ΔU=Q−W
Term Definition
U size 12{U} {} Internal energy—the sum of the kinetic and potential energies of a system’s atoms and molecules. Can be divided into many subcategories, such as thermal and chemical energy. Depends only on the state of a system (such as its P size 12{P} {} , V size 12{V} {} , and T size 12{T} {} ), not on how the energy entered the system. Change in internal energy is path independent.
Q size 12{Q} {} Heat—energy transferred because of a temperature difference. Characterized by random molecular motion. Highly dependent on path. Q size 12{Q} {} entering a system is positive.
W size 12{W} {} Work—energy transferred by a force moving through a distance. An organized, orderly process. Path dependent. W size 12{W} {} done by a system (either against an external force or to increase the volume of the system) is positive.

Section summary

  • The first law of thermodynamics is given as Δ U = Q W size 12{ΔU=Q - W} {} , where Δ U size 12{ΔU} {} is the change in internal energy of a system, Q size 12{Q} {} is the net heat transfer (the sum of all heat transfer into and out of the system), and W size 12{W} {} is the net work done (the sum of all work done on or by the system).
  • Both Q size 12{Q} {} and W size 12{W} {} are energy in transit; only Δ U size 12{ΔU} {} represents an independent quantity capable of being stored.
  • The internal energy U size 12{U} {} of a system depends only on the state of the system and not how it reached that state.
  • Metabolism of living organisms, and photosynthesis of plants, are specialized types of heat transfer, doing work, and internal energy of systems.

Conceptual questions

Describe the photo of the tea kettle at the beginning of this section in terms of heat transfer, work done, and internal energy. How is heat being transferred? What is the work done and what is doing it? How does the kettle maintain its internal energy?

Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask