<< Chapter < Page Chapter >> Page >

The situation would seem different to the astronaut. Because motion is relative, the spaceship would seem to be stationary and the Earth would appear to move. (This is the sensation you have when flying in a jet.) If the astronaut looks out the window of the spaceship, she will see time slow down on the Earth by a factor of γ = 30 . 0 size 12{γ="30" "." 0} {} . To her, the Earth-bound sister will have aged only 2/30 (1/15) of a year, while she aged 2.00 years. The two sisters cannot both be correct.

There are two sections in this figure. In the first section a young woman is shown standing on the Earth and her twin is standing in a traveling spaceship. There is a clock beside each of the women showing equal time. In the second section of the figure it is shown that the traveling twin ages less than the Earth-bound twin and the Earth-bound twin is looking older. In the clocks it is shown that on Earth time runs faster than on the traveling spaceship.
The twin paradox asks why the traveling twin ages less than the Earth-bound twin. That is the prediction we obtain if we consider the Earth-bound twin’s frame. In the astronaut’s frame, however, the Earth is moving and time runs slower there. Who is correct?

As with all paradoxes, the premise is faulty and leads to contradictory conclusions. In fact, the astronaut’s motion is significantly different from that of the Earth-bound twin. The astronaut accelerates to a high velocity and then decelerates to view the star system. To return to the Earth, she again accelerates and decelerates. The Earth-bound twin does not experience these accelerations. So the situation is not symmetric, and it is not correct to claim that the astronaut will observe the same effects as her Earth-bound twin. If you use special relativity to examine the twin paradox, you must keep in mind that the theory is expressly based on inertial frames, which by definition are not accelerated or rotating. Einstein developed general relativity to deal with accelerated frames and with gravity, a prime source of acceleration. You can also use general relativity to address the twin paradox and, according to general relativity, the astronaut will age less. Some important conceptual aspects of general relativity are discussed in General Relativity and Quantum Gravity of this course.

In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities by flying extremely accurate atomic clocks around the Earth on commercial aircraft. They measured elapsed time to an accuracy of a few nanoseconds and compared it with the time measured by clocks left behind. Hafele and Keating’s results were within experimental uncertainties of the predictions of relativity. Both special and general relativity had to be taken into account, since gravity and accelerations were involved as well as relative motion.

1. What is γ size 12{γ} {} if v = 0 .650 c size 12{v=0 "." "150"c} {} ?

Solution

γ = 1 1 v 2 c 2 = 1 1 ( 0 . 650 c ) 2 c 2 = 1 . 32 size 12{γ= { {1} over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } = { {1} over { sqrt {1 - { { \( 0 "." "650"c \) rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } =1 "." "32"} {}

2. A particle travels at 1 . 90 × 10 8 m/s size 12{1 "." "90" times "10" rSup { size 8{8} } `"m/s"} {} and lives 2 . 10 × 10 8 s size 12{2 "." "10" times "10" rSup { size 8{ - 8} } `s} {} when at rest relative to an observer. How long does the particle live as viewed in the laboratory?

Δ t = Δ t 0 1 v 2 c 2 = 2 . 10 × 10 8 s 1 ( 1 . 90 × 10 8 m/s ) 2 ( 3 . 00 × 10 8 m/s ) 2 = 2 . 71 × 10 8 s size 12{Δt= { {Δt rSub { size 8{0} } } over { sqrt {1 - { {v rSup { size 8{2} } } over {c rSup { size 8{2} } } } } } } = { {2 "." "10" times "10" rSup { size 8{ - 8} } " s"} over { sqrt {1 - { { \( 1 "." "90" times "10" rSup { size 8{8} } " m/s" \) rSup { size 8{2} } } over { \( 3 "." "00" times "10" rSup { size 8{8} } " m/s" \) rSup { size 8{2} } } } } } } =2 "." "71" times "10" rSup { size 8{ - 8} } " s"} {}

Got questions? Get instant answers now!

Section summary

  • Two events are defined to be simultaneous if an observer measures them as occurring at the same time. They are not necessarily simultaneous to all observers—simultaneity is not absolute.
  • Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.
  • Observers moving at a relative velocity v size 12{v} {} do not measure the same elapsed time for an event. Proper time Δ t 0 size 12{Δt rSub { size 8{0} } } {} is the time measured by an observer at rest relative to the event being observed. Proper time is related to the time Δ t size 12{Δt} {} measured by an Earth-bound observer by the equation
    Δ t = Δ t 0 1 v 2 c 2 = γ Δ t 0 ,

    where

    γ = 1 1 v 2 c 2 .
  • The equation relating proper time and time measured by an Earth-bound observer implies that relative velocity cannot exceed the speed of light.
  • The twin paradox asks why a twin traveling at a relativistic speed away and then back towards the Earth ages less than the Earth-bound twin. The premise to the paradox is faulty because the traveling twin is accelerating. Special relativity does not apply to accelerating frames of reference.
  • Time dilation is usually negligible at low relative velocities, but it does occur, and it has been verified by experiment.

Conceptual questions

Does motion affect the rate of a clock as measured by an observer moving with it? Does motion affect how an observer moving relative to a clock measures its rate?

Got questions? Get instant answers now!

To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer moving with the process? Which observer measures proper time?

Got questions? Get instant answers now!

How could you travel far into the future without aging significantly? Could this method also allow you to travel into the past?

Got questions? Get instant answers now!

Problems&Exercises

(a) What is γ size 12{γ} {} if v = 0 . 250 c size 12{v=0 "." "250"c} {} ? (b) If v = 0 . 500 c size 12{v=0 "." "500"c} {} ?

(a) 1.0328

(b) 1.15

Got questions? Get instant answers now!

(a) What is γ size 12{γ} {} if v = 0 . 100 c size 12{v=0 "." "100"c} {} ? (b) If v = 0 . 900 c size 12{v=0 "." "900"c} {} ?

Got questions? Get instant answers now!

Particles called π size 12{π} {} -mesons are produced by accelerator beams. If these particles travel at 2 . 70 × 10 8 m/s size 12{2 "." "70" times "10" rSup { size 8{8} } `"m/s"} {} and live 2 . 60 × 10 8 s when at rest relative to an observer, how long do they live as viewed in the laboratory?

5 . 96 × 10 8 s size 12{5 "." "96" times "10" rSup { size 8{ - 8} } " s"} {}

Got questions? Get instant answers now!

Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at 0 . 980 c size 12{0 "." "980"c} {} , and it lives 1 . 24 × 10 8 s when at rest relative to an observer. How long does it live as you observe it?

Got questions? Get instant answers now!

A neutral π size 12{π} {} -meson is a particle that can be created by accelerator beams. If one such particle lives 1 . 40 × 10 16 s as measured in the laboratory, and 0 . 840 × 10 16 s when at rest relative to an observer, what is its velocity relative to the laboratory?

0.800 c

Got questions? Get instant answers now!

A neutron lives 900 s when at rest relative to an observer. How fast is the neutron moving relative to an observer who measures its life span to be 2065 s?

Got questions? Get instant answers now!

If relativistic effects are to be less than 1%, then γ size 12{γ} {} must be less than 1.01. At what relative velocity is γ = 1 . 01 size 12{γ=1 "." "01"} {} ?

0 . 140 c size 12{0 "." "140"c} {}

Got questions? Get instant answers now!

If relativistic effects are to be less than 3%, then γ size 12{γ} {} must be less than 1.03. At what relative velocity is γ = 1 . 03 size 12{γ=1 "." "03"} {} ?

Got questions? Get instant answers now!

(a) At what relative velocity is γ = 1 . 50 size 12{γ=1 "." "50"} {} ? (b) At what relative velocity is γ = 100 size 12{γ="100"} {} ?

(a) 0 . 745 c size 12{0 "." "745"c} {}

(b) 0 . 99995 c size 12{0 "." "99995"c} {} (to five digits to show effect)

Got questions? Get instant answers now!

(a) At what relative velocity is γ = 2 . 00 size 12{γ=2 "." "00"} {} ? (b) At what relative velocity is γ = 10 . 0 size 12{γ="10" "." 0} {} ?

Got questions? Get instant answers now!

Unreasonable Results

(a) Find the value of γ size 12{γ} {} for the following situation. An Earth-bound observer measures 23.9 h to have passed while signals from a high-velocity space probe indicate that 24.0 h size 12{"24" "." 0" h"} {} have passed on board. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) 0.996

(b) γ size 12{γ} {} cannot be less than 1.

(c) Assumption that time is longer in moving ship is unreasonable.

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask