<< Chapter < Page Chapter >> Page >
n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 2 , size 12{n rSub { size 8{1} } A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } {}

where n 1 size 12{n rSub { size 8{1} } } {} and n 2 size 12{n rSub { size 8{2} } } {} are the number of branches in each of the sections along the tube.

Calculating flow speed and vessel diameter: branching in the cardiovascular system

The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a) Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm. (b) Blood also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is 5.0 L/min, the speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is 8.0 μ m , calculate the number of capillaries in the blood circulatory system.

Strategy

We can use Q = A v ¯ size 12{Q=A {overline {v}} } {} to calculate the speed of flow in the aorta and then use the general form of the equation of continuity to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by Q = A v ¯ size 12{Q=A {overline {v}} } {} or v ¯ = Q πr 2 size 12{ {overline {v}} = { {Q} over {πr rSup { size 8{2} } } } } {} for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

v ¯ = 5.0 L/min 10 3 m 3 /L 1 min/ 60 s π 0 . 010 m 2 = 0 . 27 m/s . size 12{ { bar {v}}= { { left (5 "." 0`"L/min" right ) left ("10" rSup { size 8{ - 3} } `m rSup { size 8{3} } "/L" right ) left (1`"min/""60"`s right )} over {π left (0 "." "010 m" right ) rSup { size 8{2} } } } =0 "." "27"`"m/s"} {}

Solution for (b)

Using n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 1 size 12{n rSub { size 8{1} } A rSub { size 8{1} } {overline {v rSub { size 8{1} } }} =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v rSub { size 8{2} } }} } {} , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for n 2 size 12{n rSub { size 8{2} } } {} (the number of capillaries) gives n 2 = n 1 A 1 v ¯ 1 A 2 v ¯ 2 . Converting all quantities to units of meters and seconds and substituting into the equation above gives

n 2 = 1 π 10 × 10 3 m 2 0.27 m/s π 4.0 × 10 6 m 2 0.33 × 10 3 m/s = 5.0 × 10 9 capillaries . size 12{n rSub { size 8{2} } = { { left (1 right ) left (π right ) left ("10" times "10" rSup { size 8{ - 3} } " m" right ) rSup { size 8{2} } left (0 "." "27"" m/s" right )} over { left (π right ) left (4 "." 0 times "10" rSup { size 8{ - 6} } " m" right ) rSup { size 8{2} } left (0 "." "33" times "10" rSup { size 8{ - 3} } " m/s" right )} } =5 "." 0 times "10" rSup { size 8{9} } " capillaries"} {}

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the significant increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for effective exchange to occur although it is equally important for the flow not to become stationary in order to avoid the possibility of clotting. Does this large number of capillaries in the body seem reasonable? In active muscle, one finds about 200 capillaries per mm 3 size 12{"mm" rSup { size 8{3} } } {} , or about 200 × 10 6 size 12{"200" times "10" rSup { size 8{6} } } {} per 1 kg of muscle. For 20 kg of muscle, this amounts to about 4 × 10 9 size 12{4 times "10" rSup { size 8{9} } } {} capillaries.

Section summary

  • Flow rate Q size 12{Q} {} is defined to be the volume V size 12{V} {} flowing past a point in time t size 12{t} {} , or Q = V t size 12{Q= { {V} over {t} } } {} where V size 12{V} {} is volume and t size 12{t} {} is time.
  • The SI unit of volume is m 3 size 12{m rSup { size 8{3} } } {} .
  • Another common unit is the liter (L), which is 10 3 m 3 size 12{"10" rSup { size 8{ - 3} } `m rSup { size 8{3} } } {} .
  • Flow rate and velocity are related by Q = A v ¯ size 12{Q=A {overline {v}} } {} where A size 12{A} {} is the cross-sectional area of the flow and v ¯ size 12{ {overline {v}} } {} is its average velocity.
  • For incompressible fluids, flow rate at various points is constant. That is,
    Q 1 = Q 2 A 1 v ¯ 1 = A 2 v ¯ 2 n 1 A 1 v ¯ 1 = n 2 A 2 v ¯ 2 . size 12{ left none matrix { Q rSub { size 8{1} } =Q rSub { size 8{2} } {} ##A rSub { size 8{1} } {overline {v}} rSub { size 8{1} } =A rSub { size 8{2} } {overline {v}} rSub { size 8{2} } {} ## n rSub { size 8{1} } A rSub { size 8{1} } {overline {v}} rSub { size 8{1} } =n rSub { size 8{2} } A rSub { size 8{2} } {overline {v}} rSub { size 8{2} }} right rbrace "." } {}

Conceptual questions

What is the difference between flow rate and fluid velocity? How are they related?

Got questions? Get instant answers now!

Many figures in the text show streamlines. Explain why fluid velocity is greatest where streamlines are closest together. (Hint: Consider the relationship between fluid velocity and the cross-sectional area through which it flows.)

Got questions? Get instant answers now!

Identify some substances that are incompressible and some that are not.

Got questions? Get instant answers now!

Problems&Exercises

What is the average flow rate in cm 3 /s size 12{"cm" rSup { size 8{3} } "/s"} {} of gasoline to the engine of a car traveling at 100 km/h if it averages 10.0 km/L?

2.78 cm 3 /s size 12{"cm" rSup { size 8{3} } "/s"} {}

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask