<< Chapter < Page Chapter >> Page >

Note that although the resistance in the circuit considered is negligible, the AC current is not extremely large because inductive reactance impedes its flow. With AC, there is no time for the current to become extremely large.

Capacitors and capacitive reactance

Consider the capacitor connected directly to an AC voltage source as shown in [link] . The resistance of a circuit like this can be made so small that it has a negligible effect compared with the capacitor, and so we can assume negligible resistance. Voltage across the capacitor and current are graphed as functions of time in the figure.

Part a of the figure shows a capacitor C connected across an A C voltage source V. The voltage across the capacitor is given by V C. Part b of the diagram shows a graph for the variation of current and voltage across the capacitor as functions of time. The voltage V C and current I C is plotted along the Y axis and the time t is along the X axis. The graph for current is a progressive sine wave from the origin starting with a wave along the negative Y axis. The graph for voltage is a cosine wave and amplitude slightly less than the current wave.
(a) An AC voltage source in series with a capacitor C having negligible resistance. (b) Graph of current and voltage across the capacitor as functions of time.

The graph in [link] starts with voltage across the capacitor at a maximum. The current is zero at this point, because the capacitor is fully charged and halts the flow. Then voltage drops and the current becomes negative as the capacitor discharges. At point a, the capacitor has fully discharged ( Q = 0 size 12{Q=0} {} on it) and the voltage across it is zero. The current remains negative between points a and b, causing the voltage on the capacitor to reverse. This is complete at point b, where the current is zero and the voltage has its most negative value. The current becomes positive after point b, neutralizing the charge on the capacitor and bringing the voltage to zero at point c, which allows the current to reach its maximum. Between points c and d, the current drops to zero as the voltage rises to its peak, and the process starts to repeat. Throughout the cycle, the voltage follows what the current is doing by one-fourth of a cycle:

Ac voltage in a capacitor

When a sinusoidal voltage is applied to a capacitor, the voltage follows the current by one-fourth of a cycle, or by a 90º phase angle.

The capacitor is affecting the current, having the ability to stop it altogether when fully charged. Since an AC voltage is applied, there is an rms current, but it is limited by the capacitor. This is considered to be an effective resistance of the capacitor to AC, and so the rms current I size 12{I} {} in the circuit containing only a capacitor C size 12{C} {} is given by another version of Ohm’s law to be

I = V X C , size 12{I= { {V} over {X rSub { size 8{C} } } } } {}

where V size 12{V} {} is the rms voltage and X C size 12{X rSub { size 8{C} } } {} is defined (As with X L size 12{X rSub { size 8{L} } } {} , this expression for X C size 12{X rSub { size 8{C} } } {} results from an analysis of the circuit using Kirchhoff’s rules and calculus) to be

X C = 1 fC , size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {}

where X C size 12{X rSub { size 8{C} } } {} is called the capacitive reactance    , because the capacitor reacts to impede the current. X C size 12{X rSub { size 8{C} } } {} has units of ohms (verification left as an exercise for the reader). X C size 12{X rSub { size 8{C} } } {} is inversely proportional to the capacitance C size 12{C} {} ; the larger the capacitor, the greater the charge it can store and the greater the current that can flow. It is also inversely proportional to the frequency f size 12{f} {} ; the greater the frequency, the less time there is to fully charge the capacitor, and so it impedes current less.

Calculating capacitive reactance and then current

(a) Calculate the capacitive reactance of a 5.00 mF capacitor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is the rms current if the applied rms voltage is 120 V?

Strategy

The capacitive reactance is found directly from the expression in X C = 1 fC size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} . Once X C has been found at each frequency, Ohm’s law stated as I = V / X C size 12{I=V/X rSub { size 8{C} } } {} can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and capacitance into X C = 1 fC size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} gives

X C = 1 fC = 1 6 . 28 ( 60 . 0 / s ) ( 5 . 00  μ F ) = 531 Ω at 60 Hz . alignl { stack { size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} #" "= { {1} over {6 "." "28" \( "60" "." 0/s \) \( 5 "." "00" μF \) } } ="531 " %OMEGA " at 60 Hz" {} } } {}

Similarly, at 10 kHz,

X C = 1 fC = 1 6 . 28 ( 1 . 00 × 10 4 / s ) ( 5 . 00  μ F ) = 3.18 Ω at 10 kHz . alignl { stack { size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } = { {1} over {6 "." "28" \( 1 "." "00" times "10" rSup { size 8{4} } /s \) \( 5 "." "00" μF \) } } } {} #" "=3 "." "18" %OMEGA " at 10 kHz" {} } } {}

Solution for (b)

The rms current is now found using the version of Ohm’s law in I = V / X C size 12{I=V/X rSub { size 8{C} } } {} , given the applied rms voltage is 120 V. For the first frequency, this yields

I = V X C = 120 V 531 Ω = 0.226 A at 60 Hz . size 12{I= { {V} over {X rSub { size 8{C} } } } = { {"120"" V"} over {"531 " %OMEGA } } =0 "." "226"" A"} {}

Similarly, at 10 kHz,

I = V X C = 120 V 3.18 Ω = 37.7 A at 10 kHz . size 12{I= { {V} over {X rSub { size 8{C} } } } = { {"120"" V"} over {3 "." "18 " %OMEGA } } ="37" "." 7" A"} {}

Discussion

The capacitor reacts very differently at the two different frequencies, and in exactly the opposite way an inductor reacts. At the higher frequency, its reactance is small and the current is large. Capacitors favor change, whereas inductors oppose change. Capacitors impede low frequencies the most, since low frequency allows them time to become charged and stop the current. Capacitors can be used to filter out low frequencies. For example, a capacitor in series with a sound reproduction system rids it of the 60 Hz hum.

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask