<< Chapter < Page Chapter >> Page >

Relative humidity is related to the partial pressure of water vapor in the air. At 100% humidity, the partial pressure is equal to the vapor pressure, and no more water can enter the vapor phase. If the partial pressure is less than the vapor pressure, then evaporation will take place, as humidity is less than 100%. If the partial pressure is greater than the vapor pressure, condensation takes place. In everyday language, people sometimes refer to the capacity of air to “hold” water vapor, but this is not actually what happens. The water vapor is not held by the air. The amount of water in air is determined by the vapor pressure of water and has nothing to do with the properties of air.

Saturation vapor density of water
Temperature ( º C ) size 12{ \( °C \) } {} Vapor pressure (Pa) Saturation vapor density (g/m 3 )
−50 4.0 0.039
−20 1 . 04 × 10 2 size 12{1 "." "04" times "10" rSup { size 8{2} } } {} 0.89
−10 2 . 60 × 10 2 size 12{2 "." "60"´"10" rSup { size 8{2} } } {} 2.36
0 6 . 10 × 10 2 size 12{6 "." "10"´"10" rSup { size 8{2} } } {} 4.84
5 8 . 68 × 10 2 size 12{8 "." "68"´"10" rSup { size 8{2} } } {} 6.80
10 1 . 19 × 10 3 size 12{1 "." "19"´"10" rSup { size 8{3} } } {} 9.40
15 1 . 69 × 10 3 size 12{1 "." "69"´"10" rSup { size 8{3} } } {} 12.8
20 2 . 33 × 10 3 size 12{2 "." "33"´"10" rSup { size 8{3} } } {} 17.2
25 3 . 17 × 10 3 size 12{3 "." "17"´"10" rSup { size 8{3} } } {} 23.0
30 4 . 24 × 10 3 size 12{4 "." "24"´"10" rSup { size 8{3} } } {} 30.4
37 6 . 31 × 10 3 size 12{6 "." "31"´"10" rSup { size 8{3} } } {} 44.0
40 7 . 34 × 10 3 size 12{7 "." "34"´"10" rSup { size 8{3} } } {} 51.1
50 1 . 23 × 10 4 size 12{1 "." "23" times "10" rSup { size 8{4} } } {} 82.4
60 1 . 99 × 10 4 size 12{1 "." "99"´"10" rSup { size 8{4} } } {} 130
70 3 . 12 × 10 4 size 12{3 "." "12"´"10" rSup { size 8{4} } } {} 197
80 4 . 73 × 10 4 size 12{4 "." "73"´"10" rSup { size 8{4} } } {} 294
90 7 . 01 × 10 4 size 12{7 "." "01"´"10" rSup { size 8{4} } } {} 418
95 8 . 59 × 10 4 size 12{8 "." "59"´"10" rSup { size 8{4} } } {} 505
100 1 . 01 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 598
120 1 . 99 × 10 5 size 12{1 "." "99"´"10" rSup { size 8{5} } } {} 1095
150 4 . 76 × 10 5 size 12{4 "." "76"´"10" rSup { size 8{5} } } {} 2430
200 1 . 55 × 10 6 size 12{1 "." "55"´"10" rSup { size 8{6} } } {} 7090
220 2 . 32 × 10 6 size 12{2 "." "32"´"10" rSup { size 8{6} } } {} 10,200

Calculating density using vapor pressure

[link] gives the vapor pressure of water at 20 . 0 º C size 12{"20" "." 0°C} {} as 2 . 33 × 10 3 Pa . size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa" "." } {} Use the ideal gas law to calculate the density of water vapor in g / m 3 size 12{g/m rSup { size 8{3} } } {} that would create a partial pressure equal to this vapor pressure. Compare the result with the saturation vapor density given in the table.

Strategy

To solve this problem, we need to break it down into a two steps. The partial pressure follows the ideal gas law,

PV = nRT, size 12{ size 11{ ital "PV"= ital "nRT"}} {}

where n size 12{n} {} is the number of moles. If we solve this equation for n / V size 12{n/V} {} to calculate the number of moles per cubic meter, we can then convert this quantity to grams per cubic meter as requested. To do this, we need to use the molecular mass of water, which is given in the periodic table.

Solution

1. Identify the knowns and convert them to the proper units:

  1. temperature T = 20 º C=293 K size 12{T="20"°"C=293 K"} {}
  2. vapor pressure P size 12{P} {} of water at 20 º C size 12{"20"°C} {} is 2 . 33 × 10 3 Pa size 12{2 "." "33" times "10" rSup { size 8{3} } " Pa"} {}
  3. molecular mass of water is 18 . 0 g/mol size 12{"18" "." 0" g/mol"} {}

2. Solve the ideal gas law for n / V size 12{n/V} {} .

n V = P RT size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } } {}

3. Substitute known values into the equation and solve for n / V size 12{n/V} {} .

n V = P RT = 2 . 33 × 10 3 Pa 8 . 31 J/mol K 293 K = 0 . 957 mol/m 3 size 12{ { { size 11{n}} over { size 11{V}} } = { { size 11{P}} over { size 11{ ital "RT"}} } = { { size 11{2 "." "33" times "10" rSup { size 8{3} } `"Pa"}} over { size 12{ left (8 "." "31"`"J/mol" cdot K right ) left ("293"`K right )} } } =0 "." "957"`"mol/m" rSup { size 8{3} } } {}

4. Convert the density in moles per cubic meter to grams per cubic meter.

ρ = 0 . 957 mol m 3 18 . 0 g mol = 17 . 2 g/m 3 size 12{ size 11{ρ= left ( size 11{0 "." "957" { { size 11{"mol"}} over { size 11{m rSup { size 8{3} } }} } } right ) left ( size 12{ { {"18" "." "0 g"} over { size 12{"mol"} } } } right )="17" "." 2" g/m" rSup { size 8{3} } }} {}

Discussion

The density is obtained by assuming a pressure equal to the vapor pressure of water at 20 . 0 º C size 12{"20" "." 0°C} {} . The density found is identical to the value in [link] , which means that a vapor density of 17 . 2 g/m 3 size 12{"17" "." 2" g/m" rSup { size 8{3} } } {} at 20 . 0 º C size 12{"20" "." 0°C} {} creates a partial pressure of 2 . 33 × 10 3 Pa, size 12{2 "." "33"´"10" rSup { size 8{3} } " Pa,"} {} equal to the vapor pressure of water at that temperature. If the partial pressure is equal to the vapor pressure, then the liquid and vapor phases are in equilibrium, and the relative humidity is 100%. Thus, there can be no more than 17.2 g of water vapor per m 3 size 12{m rSup { size 8{3} } } {} at 20 . 0 º C size 12{"20" "." 0°C} {} , so that this value is the saturation vapor density at that temperature. This example illustrates how water vapor behaves like an ideal gas: the pressure and density are consistent with the ideal gas law (assuming the density in the table is correct). The saturation vapor densities listed in [link] are the maximum amounts of water vapor that air can hold at various temperatures.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask