<< Chapter < Page Chapter >> Page >

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are perpendicular, so A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} and A y = A sin θ size 12{A rSub { size 8{y} } =A"sin"θ} {} are used. The magnitude of the components of displacement s size 12{s} {} along these axes are x size 12{x} {} and y. size 12{y} {} The magnitudes of the components of the velocity v size 12{v} {} are v x = v cos θ size 12{v rSub { size 8{x} } =v"cos"θ} {} and v y = v sin θ, size 12{v rSub { size 8{y} } =v"sin"θ} {} where v size 12{v} {} is the magnitude of the velocity and θ size 12{θ} {} is its direction, as shown in [link] . Initial values are denoted with a subscript 0, as usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic equations for horizontal and vertical motion take the following forms:

Horizontal Motion ( a x = 0 ) size 12{"Horizontal Motion " \( a rSub { size 8{x} } =0 \) } {}
x = x 0 + v x t size 12{x=x rSub { size 8{0} } +v rSub { size 8{x} } t} {}
v x = v 0 x = v x = velocity is a constant. size 12{v rSub { size 8{x} } =v rSub { size 8{0x} } =v rSub { size 8{x} } ="velocity is a constant."} {}
Vertical Motion ( assuming positive is up a y = g = 9. 80 m/s 2 ) size 12{"Vertical Motion " \( "assuming positive is up "a rSub { size 8{y} } = - g= - 9/"80"" m/s" rSup { size 8{2} } \) } {}
y = y 0 + 1 2 ( v 0 y + v y ) t size 12{y=y rSub { size 8{0} } + { {1} over {2} } \( v rSub { size 8{0y} } +v rSub { size 8{y} } \) t} {}
v y = v 0 y gt size 12{v rSub { size 8{y} } =v rSub { size 8{0y} } - ital "gt"} {}
y = y 0 + v 0 y t 1 2 gt 2 size 12{y=y rSub { size 8{0} } +v rSub { size 8{0y} } t - { {1} over {2} } ital "gt" rSup { size 8{2} } } {}
v y 2 = v 0 y 2 2 g ( y y 0 ) . size 12{v rSub { size 8{y} } rSup { size 8{2} } =v rSub { size 8{0y} } rSup { size 8{2} } - 2g \( y - y rSub { size 8{0} } \) "."} {}

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common variable between the motions is time t size 12{t} {} . The problem solving procedures here are the same as for one-dimensional kinematics    and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement s size 12{s} {} and velocity v size 12{v} {} . Because the x - and y -motions are perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical Methods and employing A = A x 2 + A y 2 size 12{v= sqrt {v rSub { size 8{x} } rSup { size 8{2} } +v rSub { size 8{y} } rSup { size 8{2} } } } {} and θ = tan 1 ( A y / A x ) size 12{θ="tan" rSup { size 8{ - 1} } \( A rSub { size 8{y} } /A rSub { size 8{x} } \) } {} in the following form, where θ size 12{θ} {} is the direction of the displacement s size 12{s} {} and θ v size 12{θ rSub { size 8{v} } } {} is the direction of the velocity v size 12{v} {} :

Total displacement and velocity

s = x 2 + y 2 size 12{s= sqrt {x rSup { size 8{2} } +y rSup { size 8{2} } } } {}
θ = tan 1 ( y / x ) size 12{θ="tan" rSup { size 8{ - 1} } \( y/x \) } {}
v = v x 2 + v y 2 size 12{v= sqrt {v rSub { size 8{x} } rSup { size 8{2} } +v rSub { size 8{y} } rSup { size 8{2} } } } {}
θ v = tan 1 ( v y / v x ) . size 12{θ rSub { size 8{v} } ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) "."} {}
In part a the figure shows projectile motion of a ball with initial velocity of v zero at an angle of theta zero with the horizontal x axis. The horizontal component v x and the vertical component v y at various positions of ball in the projectile path is shown. In part b only the horizontal velocity component v sub x is shown whose magnitude is constant at various positions in the path. In part c only vertical velocity component v sub y is shown. The vertical velocity component v sub y is upwards till it reaches the maximum point and then its direction changes to downwards. In part d resultant v of horizontal velocity component v sub x and downward vertical velocity component v sub y is found which makes an angle theta with the horizontal x axis. The direction of resultant velocity v is towards south east.
(a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and horizontal axes. (b) The horizontal motion is simple, because a x = 0 size 12{a rSub { size 8{x} } =0} {} and v x size 12{v rSub { size 8{x} } } {} is thus constant. (c) The velocity in the vertical direction begins to decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y -motions are recombined to give the total velocity at any given point on the trajectory.

A fireworks projectile explodes high and away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0º above the horizontal, as illustrated in [link] . The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion can be broken into horizontal and vertical motions in which a x = 0 size 12{ a rSub { size 8{x} } =0} {} and a y = g size 12{ a rSub { size 8{y} } =-g} {} . We can then define x 0 size 12{x rSub { size 8{0} } } {} and y 0 size 12{y rSub { size 8{0} } } {} to be zero and solve for the desired quantities.

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask