<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Describe proper length.
  • Calculate length contraction.
  • Explain why we do not notice these effects at everyday scales.
A long isolated double-lane road banked by barren land on both sides.
People might describe distances differently, but at relativistic speeds, the distances really are different. (credit: Corey Leopold, Flickr)

Have you ever driven on a road that seems like it goes on forever? If you look ahead, you might say you have about 10 km left to go. Another traveler might say the road ahead looks like it’s about 15 km long. If you both measured the road, however, you would agree. Traveling at everyday speeds, the distance you both measure would be the same. You will read in this section, however, that this is not true at relativistic speeds. Close to the speed of light, distances measured are not the same when measured by different observers.

Proper length

One thing all observers agree upon is relative speed. Even though clocks measure different elapsed times for the same process, they still agree that relative speed, which is distance divided by elapsed time, is the same. This implies that distance, too, depends on the observer’s relative motion. If two observers see different times, then they must also see different distances for relative speed to be the same to each of them.

The muon discussed in [link] illustrates this concept. To an observer on the Earth, the muon travels at 0.950 c size 12{c} {} for 7.05 μ s size 12{c} {} from the time it is produced until it decays. Thus it travels a distance

L 0 = v Δ t = ( 0.950 ) ( 3.00 × 10 8 m/s ) ( 7.05 × 10 6 s ) = 2.01 km

relative to the Earth. In the muon’s frame of reference, its lifetime is only 2.20 μ s . It has enough time to travel only

L = v Δ t 0 = ( 0 . 950 ) ( 3 . 00 × 10 8 m/s ) ( 2 . 20 × 10 6 s ) = 0 .627 km .

The distance between the same two events (production and decay of a muon) depends on who measures it and how they are moving relative to it.

Proper length

Proper length L 0 size 12{L rSub { size 8{0} } } {} is the distance between two points measured by an observer who is at rest relative to both of the points.

The Earth-bound observer measures the proper length L 0 size 12{L rSub { size 8{0} } } {} , because the points at which the muon is produced and decays are stationary relative to the Earth. To the muon, the Earth, air, and clouds are moving, and so the distance L size 12{L} {} it sees is not the proper length.

In part a observer observes from ground frame of reference a muon above earth with speed v in the rightward direction. The distance between the muon and the place where it disintegrates is two point zero one. In part b the system is shown in motion having velocity v in the leftward direction. So, the cloud and ground are displaced zero point six two seven kilo meter in the opposite direction.
(a) The Earth-bound observer sees the muon travel 2.01 km between clouds. (b) The muon sees itself travel the same path, but only a distance of 0.627 km. The Earth, air, and clouds are moving relative to the muon in its frame, and all appear to have smaller lengths along the direction of travel.

Length contraction

To develop an equation relating distances measured by different observers, we note that the velocity relative to the Earth-bound observer in our muon example is given by

v = L 0 Δ t . size 12{v= { {L rSub { size 8{0} } } over {Δt} } } {}

The time relative to the Earth-bound observer is Δ t size 12{Δt} {} , since the object being timed is moving relative to this observer. The velocity relative to the moving observer is given by

v = L Δ t 0 . size 12{v= { {L rSub { size 8{0} } } over {Δt} } } {}

The moving observer travels with the muon and therefore observes the proper time Δ t 0 size 12{Δt rSub { size 8{0} } } {} . The two velocities are identical; thus,

Questions & Answers

preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
why God created humanity
Manuel Reply
Because HE needs someone to dominate the earth (Gen. 1:26)
Olorunfemi
Is the object in a conductor or an insulator? Justify your answer. whats the answer to this question? pls need help figure is given above
Jun Reply
how do i calculate the pressure on the base of a deposit if the deposit is moving with a linear aceleration
ximena Reply
why electromagnetic induction is not used in room heater ?
Gopi Reply
What is position?
Amoah Reply
What is law of gravition
sushil Reply
what is magnetism
Sandeep Reply
what is charging by induction
Sandeep Reply
what is electric field lines
Sandeep Reply
law of gravitation
Rakesh Reply
Suppose a 0.250-kg ball is thrown at 15.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in [link] . (b) What is his angular velocity if each arm is 5.00 kg? You may treat the ball as a point mass and treat the person's arms as uniform rods (each has a length of 0.900 m) and the rest of his body as a uniform cylinder of radius 0.180 m. Neglect the effect of the ball on his center of mass so that his center of mass remains in his geometrical center.
Varun Reply
Practice Key Terms 2

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask