<< Chapter < Page Chapter >> Page >

Phet explorations: photoelectric effect

See how light knocks electrons off a metal target, and recreate the experiment that spawned the field of quantum mechanics.

Photoelectric Effect

Section summary

  • The photoelectric effect is the process in which EM radiation ejects electrons from a material.
  • Einstein proposed photons to be quanta of EM radiation having energy E = hf size 12{E = ital "hf"} {} , where f size 12{f} {} is the frequency of the radiation.
  • All EM radiation is composed of photons. As Einstein explained, all characteristics of the photoelectric effect are due to the interaction of individual photons with individual electrons.
  • The maximum kinetic energy KE e size 12{"KE" rSub { size 8{e} } } {} of ejected electrons (photoelectrons) is given by KE e = hf – BE size 12{"KE "= ital "hf"" – BE"} {} , where hf size 12{ ital "hf"} {} is the photon energy and BE is the binding energy (or work function) of the electron to the particular material.

Conceptual questions

Is visible light the only type of EM radiation that can cause the photoelectric effect?

Got questions? Get instant answers now!

Which aspects of the photoelectric effect cannot be explained without photons? Which can be explained without photons? Are the latter inconsistent with the existence of photons?

Got questions? Get instant answers now!

Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM radiation? Explain briefly.

Got questions? Get instant answers now!

Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators. Discuss how this relates to the free charges in metals that make them good conductors.

Got questions? Get instant answers now!

If you pick up and shake a piece of metal that has electrons in it free to move as a current, no electrons fall out. Yet if you heat the metal, electrons can be boiled off. Explain both of these facts as they relate to the amount and distribution of energy involved with shaking the object as compared with heating it.

Got questions? Get instant answers now!

Problems&Exercises

What is the longest-wavelength EM radiation that can eject a photoelectron from silver, given that the binding energy is 4.73 eV? Is this in the visible range?

263 nm

Got questions? Get instant answers now!

Find the longest-wavelength photon that can eject an electron from potassium, given that the binding energy is 2.24 eV. Is this visible EM radiation?

Got questions? Get instant answers now!

What is the binding energy in eV of electrons in magnesium, if the longest-wavelength photon that can eject electrons is 337 nm?

3.69 eV

Got questions? Get instant answers now!

Calculate the binding energy in eV of electrons in aluminum, if the longest-wavelength photon that can eject them is 304 nm.

Got questions? Get instant answers now!

What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 450-nm EM radiation, given that the binding energy is 2.28 eV?

0.483 eV

Got questions? Get instant answers now!

UV radiation having a wavelength of 120 nm falls on gold metal, to which electrons are bound by 4.82 eV. What is the maximum kinetic energy of the ejected photoelectrons?

Got questions? Get instant answers now!

Violet light of wavelength 400 nm ejects electrons with a maximum kinetic energy of 0.860 eV from sodium metal. What is the binding energy of electrons to sodium metal?

2.25 eV

Got questions? Get instant answers now!

UV radiation having a 300-nm wavelength falls on uranium metal, ejecting 0.500-eV electrons. What is the binding energy of electrons to uranium metal?

Got questions? Get instant answers now!

What is the wavelength of EM radiation that ejects 2.00-eV electrons from calcium metal, given that the binding energy is 2.71 eV? What type of EM radiation is this?

(a) 264 nm

(b) Ultraviolet

Got questions? Get instant answers now!

Find the wavelength of photons that eject 0.100-eV electrons from potassium, given that the binding energy is 2.24 eV. Are these photons visible?

Got questions? Get instant answers now!

What is the maximum velocity of electrons ejected from a material by 80-nm photons, if they are bound to the material by 4.73 eV?

1.95 × 10 6 m/s size 12{1 "." "95" times "10" rSup { size 8{6} } " m/sec"} {}

Got questions? Get instant answers now!

Photoelectrons from a material with a binding energy of 2.71 eV are ejected by 420-nm photons. Once ejected, how long does it take these electrons to travel 2.50 cm to a detection device?

Got questions? Get instant answers now!

A laser with a power output of 2.00 mW at a wavelength of 400 nm is projected onto calcium metal. (a) How many electrons per second are ejected? (b) What power is carried away by the electrons, given that the binding energy is 2.71 eV?

(a) 4.02 × 10 15 /s size 12{4 "." "02" times "10" rSup { size 8{"15"} } "/s"} {}

(b) 0.256 mW

Got questions? Get instant answers now!

(a) Calculate the number of photoelectrons per second ejected from a 1.00-mm 2 area of sodium metal by 500-nm EM radiation having an intensity of 1 . 30 kW/m 2 size 12{1 "." "30 kW/m" rSup { size 8{2} } } {} (the intensity of sunlight above the Earth’s atmosphere). (b) Given that the binding energy is 2.28 eV, what power is carried away by the electrons? (c) The electrons carry away less power than brought in by the photons. Where does the other power go? How can it be recovered?

Got questions? Get instant answers now!

Unreasonable Results

Red light having a wavelength of 700 nm is projected onto magnesium metal to which electrons are bound by 3.68 eV. (a) Use KE e = hf BE size 12{"KE "= ital "hf"" – BE"} {} to calculate the kinetic energy of the ejected electrons. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) –1.90 eV

(b) Negative kinetic energy

(c) That the electrons would be knocked free.

Got questions? Get instant answers now!

Unreasonable Results

(a) What is the binding energy of electrons to a material from which 4.00-eV electrons are ejected by 400-nm EM radiation? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

Got questions? Get instant answers now!

Questions & Answers

What is physics?
Jeuloriz Reply
physics is a branch of science in which we are dealing with the knowledge of our physical things. macroscopic as well as microscopic. we are going look inside the univers with the help of physics. you can learn nature with the help of physics. so many branches of physics you have to learn physics.
vijay
What are quarks?
Breanna Reply
6 type of quarks
Neyaz
what is candela
Akani Reply
Candela is the unit for the measurement of light intensity.
Osei
any one can prove that 1hrpower= 746 watt
Neyaz Reply
Newton second is the unit of ...............?
Neyaz
Impulse and momentum
Fauzia
force×time and mass× velocity
vijay
Good
Neyaz
What is the simple harmonic motion?
Fauzia Reply
oscillatory motion under a retarding force proportional to the amount of displacement from an equilibrium position
Yuri
Straight out of google, you could do that to, I suppose.
Yuri
*too
Yuri
ok
Fauzia
Oscillatory motion under a regarding force proportional to the amount of displacement from an equilibrium position
Neyaz
examples of work done by load of gravity
Maureen Reply
What is ehrenfest theorem?
Fauzia Reply
You can look it up, faster and more reliable answer.
Yuri
That isn't a question to ask on a forum and I also have no idea what that is.
Yuri
what is the work done by gravity on the load 87kj,11.684m,mass xkg[g=19m/s
Maureen
What is law of mass action?
Fauzia Reply
rate of chemical reactions is proportional to concentration of reactants ...
muhammad
ok thanks
Fauzia
what is lenses
Ndobe Reply
lenses are two types
Fauzia
concave and convex
muhammad
right
Fauzia
speed of light in space
Vikash Reply
in vacuum speed of light is 3×10^8 m/s
vijay
ok
Vikash
2.99×10^8m/s
Umair
2.8820^8m/s
Muhammed
which is correct answer
Vikash
he is correct but we can round up in simple terms
vijay
3×10^8m/s
vijay
is it correct
Fauzia
I mean 3*10^8 m/s ok
vijay
299792458 meter per second
babar
3*10^8m/s
Neyaz
how many Maxwell relations in thermodynamics
vijay
how we can do prove them?
vijay
What is second law of thermodynamics?
Neyaz
please who has a detailed solution to the first two professional application questions under conservation of momentum
Kwaku Reply
I want to know more about pressure
Osei
I can help
Emeh
okay go on
True
I mean on pressure
Emeh
definition of Pressure
John
it is the force per unit area of a substance.S.I unit is Pascal 1pascal is defined as 1N acting on 1m² area i.e 1pa=1N/m²
Emeh
pls explain Doppler effect
Emmex
solve this an inverted differential manometer containing oil specific gravity 0.9 and manometer reading is 400mm find the difference of pressure
Abayomi Reply
Einstine claim that nothing can go with the speed of light even its half (50%) but in to make antimatter they they hit the sub atomic particals 99.9%the speed of light how is it possible
Salima Reply
nothing with physical properties. this doesn't include things like particles and gravitational waves
Mustafa
that particles are of very small mass.... near equals to massless
Aritra
but they exist
vijay
yes they exist but mass is too less
Aritra
ok
vijay
greet all
Abayomi
the unit of radioactivity is .....?
Neyaz
Great Sharukh ! Do you have question in physics?
Bibekbir Reply
book says that when wave enter from one medium to another its wavelenght changes but frequency not how ? and f is inversely related to wavelenth
Sharukh
yes but how comes
Sani
how are you?
Sharukh Reply
please help me
World
what's the problem
Aritra
I really don't know physics.. I need help,in solving
Amara
me too
Ewulum
hii
Cheeru
I really don't know physics.. I need help,in solving
Cheeru
me too
True
I can teach u if u are ready
latunde
yes I am ready
True
hi
Emeh
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask