# 13.4 Motion equations for constant acceleration in one dimension  (Page 7/8)

 Page 7 / 8

A manned rocket accelerates at a rate of ${\text{20 m/s}}^{2}$ during launch. How long does it take the rocket to reach a velocity of 400 m/s?

To answer this, choose an equation that allows you to solve for time $t$ , given only $a$ , ${v}_{0}$ , and $v$ .

$v\phantom{\rule{0.15em}{0ex}}=\phantom{\rule{0.15em}{0ex}}{v}_{0}+\text{at}$

Rearrange to solve for $t$ .

$t=\frac{v-v{}_{0}\text{}}{a}=\frac{\text{400 m/s}-\text{0 m/s}}{{\text{20 m/s}}^{2}}=\text{20 s}$

## Section summary

• To simplify calculations we take acceleration to be constant, so that $\stackrel{-}{a}=a$ at all times.
• We also take initial time to be zero.
• Initial position and velocity are given a subscript 0; final values have no subscript. Thus,
$\left(\begin{array}{lll}\Delta t& =& t\\ \Delta x& =& x-{x}_{0}\\ \Delta v& =& v-{v}_{0}\end{array}}$
• The following kinematic equations for motion with constant $a$ are useful:
$x={x}_{0}+\stackrel{-}{v}t$
$\stackrel{-}{v}=\frac{{v}_{0}+v}{2}$
$v={v}_{0}+\text{at}$
$x={x}_{0}+{v}_{0}t+\frac{1}{2}{\text{at}}^{2}$
${v}^{2}={v}_{0}^{2}+2a\left(x-{x}_{0}\right)$
• In vertical motion, $y$ is substituted for $x$ .

## Problems&Exercises

An Olympic-class sprinter starts a race with an acceleration of $4\text{.}{\text{50 m/s}}^{2}$ . (a) What is her speed 2.40 s later? (b) Sketch a graph of her position vs. time for this period.

(a) $\text{10}\text{.}8\phantom{\rule{0.25em}{0ex}}\text{m/s}$

(b)

A well-thrown ball is caught in a well-padded mitt. If the deceleration of the ball is $2\text{.}\text{10}×{\text{10}}^{4}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ , and 1.85 ms $\left(\text{1 ms}={\text{10}}^{-3}\phantom{\rule{0.25em}{0ex}}\text{s}\right)$ elapses from the time the ball first touches the mitt until it stops, what was the initial velocity of the ball?

38.9 m/s (about 87 miles per hour)

A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of $6\text{.20}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}{\text{m/s}}^{2}$ for $8\text{.}\text{10}×{\text{10}}^{-4}\phantom{\rule{0.25em}{0ex}}\text{s}$ . What is its muzzle velocity (that is, its final velocity)?

(a) A light-rail commuter train accelerates at a rate of $1\text{.}{\text{35 m/s}}^{2}$ . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of $1\text{.}{\text{65 m/s}}^{2}$ . How long does it take to come to a stop from its top speed? (c) In emergencies the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency deceleration in ${\text{m/s}}^{2}$ ?

(a) $\text{16}\text{.}\text{5 s}$

(b) $\text{13}\text{.}\text{5 s}$

(c) $-2\text{.}{\text{68 m/s}}^{2}$

While entering a freeway, a car accelerates from rest at a rate of $2\text{.}{\text{40 m/s}}^{2}$ for 12.0 s. (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s final velocity? Solve for this unknown in the same manner as in part (c), showing all steps explicitly.

At the end of a race, a runner decelerates from a velocity of 9.00 m/s at a rate of $2\text{.}{\text{00 m/s}}^{2}$ . (a) How far does she travel in the next 5.00 s? (b) What is her final velocity? (c) Evaluate the result. Does it make sense?

(a) $\text{20}\text{.}\text{0 m}$

(b) $-1\text{.}\text{00 m/s}$

(c) This result does not really make sense. If the runner starts at 9.00 m/s and decelerates at $2\text{.}{\text{00 m/s}}^{2}$ , then she will have stopped after 4.50 s. If she continues to decelerate, she will be running backwards.

Professional Application:

Blood is accelerated from rest to 30.0 cm/s in a distance of 1.80 cm by the left ventricle of the heart. (a) Make a sketch of the situation. (b) List the knowns in this problem. (c) How long does the acceleration take? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking your units. (d) Is the answer reasonable when compared with the time for a heartbeat?

#### Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Physics 105: adventures in physics. OpenStax CNX. Dec 02, 2015 Download for free at http://legacy.cnx.org/content/col11916/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 105: adventures in physics' conversation and receive update notifications?

 By Sebastian Sieczko... By By Mistry Bhavesh