<< Chapter < Page Chapter >> Page >

Although a capacitor is basically an open circuit, there is an rms current in a circuit with an AC voltage applied to a capacitor. This is because the voltage is continually reversing, charging and discharging the capacitor. If the frequency goes to zero (DC), X C size 12{X rSub { size 8{C} } } {} tends to infinity, and the current is zero once the capacitor is charged. At very high frequencies, the capacitor’s reactance tends to zero—it has a negligible reactance and does not impede the current (it acts like a simple wire). Capacitors have the opposite effect on AC circuits that inductors have .

Resistors in an ac circuit

Just as a reminder, consider [link] , which shows an AC voltage applied to a resistor and a graph of voltage and current versus time. The voltage and current are exactly in phase in a resistor. There is no frequency dependence to the behavior of plain resistance in a circuit:

Part a of the diagram shows a resistor R connected across an A C voltage source V. The voltage drop across the resistor R is given by V R.Part b of the diagram shows a graph showing the variation of voltage V R and current I R with time t. the V R and current I R are plotted along Y axis and time t is along the X axis. Both I and V are progressive cosine waves. The amplitude of I wave is more than V wave.
(a) An AC voltage source in series with a resistor. (b) Graph of current and voltage across the resistor as functions of time, showing them to be exactly in phase.

Ac voltage in a resistor

When a sinusoidal voltage is applied to a resistor, the voltage is exactly in phase with the current—they have a phase angle.

Section summary

  • For inductors in AC circuits, we find that when a sinusoidal voltage is applied to an inductor, the voltage leads the current by one-fourth of a cycle, or by a 90º phase angle.
  • The opposition of an inductor to a change in current is expressed as a type of AC resistance.
  • Ohm’s law for an inductor is
    I = V X L , size 12{I= { {V} over {X rSub { size 8{L} } } } } {}
    where V size 12{V} {} is the rms voltage across the inductor.
  • X L size 12{X rSub { size 8{L} } } {} is defined to be the inductive reactance, given by
    X L = fL , size 12{X rSub { size 8{L} } =2π ital "fL"} {}
    with f size 12{f} {} the frequency of the AC voltage source in hertz.
  • Inductive reactance X L size 12{X rSub { size 8{L} } } {} has units of ohms and is greatest at high frequencies.
  • For capacitors, we find that when a sinusoidal voltage is applied to a capacitor, the voltage follows the current by one-fourth of a cycle, or by a 90º phase angle.
  • Since a capacitor can stop current when fully charged, it limits current and offers another form of AC resistance; Ohm’s law for a capacitor is
    I = V X C , size 12{I= { {V} over {X rSub { size 8{C} } } } } {}
    where V size 12{V} {} is the rms voltage across the capacitor.
  • X C size 12{X rSub { size 8{C} } } {} is defined to be the capacitive reactance, given by
    X C = 1 fC . size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {}
  • X C size 12{X rSub { size 8{C} } } {} has units of ohms and is greatest at low frequencies.

Conceptual questions

Presbycusis is a hearing loss due to age that progressively affects higher frequencies. A hearing aid amplifier is designed to amplify all frequencies equally. To adjust its output for presbycusis, would you put a capacitor in series or parallel with the hearing aid’s speaker? Explain.

Got questions? Get instant answers now!

Would you use a large inductance or a large capacitance in series with a system to filter out low frequencies, such as the 100 Hz hum in a sound system? Explain.

Got questions? Get instant answers now!

High-frequency noise in AC power can damage computers. Does the plug-in unit designed to prevent this damage use a large inductance or a large capacitance (in series with the computer) to filter out such high frequencies? Explain.

Got questions? Get instant answers now!

Does inductance depend on current, frequency, or both? What about inductive reactance?

Got questions? Get instant answers now!

Explain why the capacitor in [link] (a) acts as a low-frequency filter between the two circuits, whereas that in [link] (b) acts as a high-frequency filter.

Got questions? Get instant answers now!
The figure describes two circuits with two different connections. The first part of the diagram shows circuit one and circuit two connected in series and a capacitor C is connected between them. Both the circuits are shown as grounded. The second part of the diagram shows two circuits circuit one and circuit two connected to each other. At the point of connection one end of the capacitor is connected and the other end of the capacitor is grounded. Both the circuits are shown as grounded.
Capacitors and inductors. Capacitor with high frequency and low frequency.

If the capacitors in [link] are replaced by inductors, which acts as a low-frequency filter and which as a high-frequency filter?

Got questions? Get instant answers now!

Problems&Exercises

At what frequency will a 30.0 mH inductor have a reactance of 100 Ω ?

531 Hz

Got questions? Get instant answers now!

What value of inductance should be used if a 20.0 kΩ reactance is needed at a frequency of 500 Hz?

Got questions? Get instant answers now!

What capacitance should be used to produce a 2.00 MΩ reactance at 60.0 Hz?

1.33 nF

Got questions? Get instant answers now!

At what frequency will an 80.0 mF capacitor have a reactance of 0.250 Ω ?

Got questions? Get instant answers now!

(a) Find the current through a 0.500 H inductor connected to a 60.0 Hz, 480 V AC source. (b) What would the current be at 100 kHz?

(a) 2.55 A

(b) 1.53 mA

Got questions? Get instant answers now!

(a) What current flows when a 60.0 Hz, 480 V AC source is connected to a 0.250 μF capacitor? (b) What would the current be at 25.0 kHz?

Got questions? Get instant answers now!

A 20.0 kHz, 16.0 V source connected to an inductor produces a 2.00 A current. What is the inductance?

63.7 µH

Got questions? Get instant answers now!

A 20.0 Hz, 16.0 V source produces a 2.00 mA current when connected to a capacitor. What is the capacitance?

Got questions? Get instant answers now!

(a) An inductor designed to filter high-frequency noise from power supplied to a personal computer is placed in series with the computer. What minimum inductance should it have to produce a 2.00 kΩ reactance for 15.0 kHz noise? (b) What is its reactance at 60.0 Hz?

(a) 21.2 mH

(b) 8.00 Ω

Got questions? Get instant answers now!

The capacitor in [link] (a) is designed to filter low-frequency signals, impeding their transmission between circuits. (a) What capacitance is needed to produce a 100 kΩ reactance at a frequency of 120 Hz? (b) What would its reactance be at 1.00 MHz? (c) Discuss the implications of your answers to (a) and (b).

Got questions? Get instant answers now!

The capacitor in [link] (b) will filter high-frequency signals by shorting them to earth/ground. (a) What capacitance is needed to produce a reactance of 10.0 mΩ for a 5.00 kHz signal? (b) What would its reactance be at 3.00 Hz? (c) Discuss the implications of your answers to (a) and (b).

(a) 3.18 mF

(b) 16.7 Ω

Got questions? Get instant answers now!

Unreasonable Results

In a recording of voltages due to brain activity (an EEG), a 10.0 mV signal with a 0.500 Hz frequency is applied to a capacitor, producing a current of 100 mA. Resistance is negligible. (a) What is the capacitance? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

Got questions? Get instant answers now!

Construct Your Own Problem

Consider the use of an inductor in series with a computer operating on 60 Hz electricity. Construct a problem in which you calculate the relative reduction in voltage of incoming high frequency noise compared to 60 Hz voltage. Among the things to consider are the acceptable series reactance of the inductor for 60 Hz power and the likely frequencies of noise coming through the power lines.

Got questions? Get instant answers now!

Questions & Answers

What is conductivity
Saud Reply
It is the ease with which electrical charges or heat can be transmitted through a material or a solution.
Cffrrcvccgg
how to find magnitude and direction
Arjune Reply
how to caclculate for speed
Arjune
derivation of ohms law
Kazeem Reply
derivation of resistance
Kazeem
R=v/I where R=resistor, v=voltage, I=current
Kazeem
magnitude
Arjune
A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t 0 s, the x components of the puck’s ini￾tial velocity and acceleration are v0x 1.0 m/s and ax 2.0 m/s2 . The y components of the puck’s initial velocity and acceleration are v0y 2.0 m/s and ay 2.0
Arjune
Electric current is the flow of electrons
Kelly Reply
is there really flow of electrons exist?
babar
Yes It exists
Cffrrcvccgg
explain plz how electrons flow
babar
if electron flows from where first come and end the first one
babar
an electron will flow accross a conductor because or when it posseses kinectic energy
Cffrrcvccgg
electron can not flow jist trasmit electrical energy
ghulam
free electrons of conductor
ankita
electric means the flow heat current.
Serah Reply
electric means the flow of heat current in a circuit.
Serah
What is electric
Manasseh Reply
electric means?
ghulam
electric means the flow of heat current in a circuit.
Serah
a boy cycles continuously through a distance of 1.0km in 5minutes. calculate his average speed in ms-1(meter per second). how do I solve this
Jenny Reply
speed = distance/time be sure to convert the km to m and minutes to seconds check my utube video "mathwithmrv speed"
PhysicswithMrV
d=1.0km÷1000=0.001 t=5×60=300s s=d\t s=0.001/300=0.0000033m\s
Serah
A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t 0 s, the x components of the puck’s ini￾tial velocity and acceleration are v0x 1.0 m/s and ax 2.0 m/s2 . The y components of the puck’s initial velocity and acceleration are v0y 2.0 m/s and ay 2.0
Arjune
why we cannot use DC instead of AC in a transformer
kusshaf Reply
becuse the d .c cannot travel for long distance trnsmission
ghulam
what is physics
Chiwetalu Reply
branch of science which deals with matter energy and their relationship between them
ghulam
Life science
the
what is heat and temperature
Kazeem Reply
how does sound affect temperature
Clement Reply
sound is directly proportional to the temperature.
juny
how to solve wave question
Wisdom Reply
I would like to know how I am not at all smart when it comes to math. please explain so I can understand. sincerly
Emma
Just know d relationship btw 1)wave length 2)frequency and velocity
Talhatu
First of all, you are smart and you will get it👍🏽... v = f × wavelength see my youtube channel: "mathwithmrv" if you want to know how to rearrange equations using the balance method
PhysicswithMrV
nice self promotion though xD
Beatrax
thanks dear
Chuks
hi pls help me with this question A ball is projected vertically upwards from the top of a tower 60m high with a velocity of 30ms1.what is the maximum height above the ground level?how long does it take to reach the ground level?
mahmoud
please guys help, what is the difference between concave lens and convex lens
Vincent Reply
convex lens brings rays of light to a focus while concave diverges rays of light
Christian
for mmHg to kPa yes
Matthew
it depends on the size
Matthew Reply
please what is concave lens
Vincent
a lens which diverge the ray of light
rinzuala
concave diverges light
Matthew
thank you guys
Vincent
A diverging lens
Yusuf
What is isotope
Yusuf
each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. "some elements have only one stable isotope
Karthi
what is wire wound resistors?
Naveedkhan Reply
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask