<< Chapter < Page Chapter >> Page >

Section summary

  • Statics plays an important part in understanding everyday strains in our muscles and bones.
  • Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are attached close to joints.
  • Someone with good posture stands or sits in such as way that their center of gravity lies directly above the pivot point in their hips, thereby avoiding back strain and damage to disks.

Conceptual questions

Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by muscles inside the body?

Got questions? Get instant answers now!

Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can these forces be even greater than muscle forces?

Got questions? Get instant answers now!

Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long tails if they had long necks?

Got questions? Get instant answers now!

Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the balance of the person and why start-offs are so important for races.

Got questions? Get instant answers now!

If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your answer.

Got questions? Get instant answers now!

Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

Got questions? Get instant answers now!

Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.

Got questions? Get instant answers now!

Problems&Exercises

Verify that the force in the elbow joint in [link] is 407 N, as stated in the text.

F B = 470 N; r 1 = 4.00 cm; w a = 2.50 kg; r 2 = 16.0 cm; w b = 4.00 kg; r 3 = 38.0 cm F E = w a r 2 r 1 1 + w b r 3 r 1 1 = 2.50 kg 9.80 m / s 2 16.0 cm 4.0 cm 1 + 4.00 kg 9.80 m / s 2 38.0 cm 4.00 cm 1 = 407 N alignl { stack { size 12{F rSub { size 8{B} } ="470"" N ; "r rSub { size 8{1} } =4 cdot "00"" cm ; "w rSub { size 8{a} } =2 cdot "50"" kg ;"} {} #r rSub { size 8{2} } ="16" cdot 0" cm ;" {} # w rSub { size 8{b} } =4 cdot "00"" kg ; "r rSub { size 8{3} } ="38" cdot 0" cm" {} #F rSub { size 8{E} } times r rSub { size 8{1} } =w rSub { size 8{a} } left ( { {r rSub { size 8{2} } } over {r rSub { size 8{1} } } } - 1 right )+w rSub { size 8{b} } left ( { {r rSub { size 8{3} } } over {r rSub { size 8{1} } } } - 1 right ) {} # = left (2 cdot "50 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"16" cdot "0 cm"} over {4 cdot "0 cm"} } - 1 right ) {} #+ left (4 cdot "00 kg" right ) left (9 cdot "80 " {m} slash {s rSup { size 8{2} } } right ) left ( { {"38" cdot "0 cm"} over {4 cdot "00 cm"} } - 1 right ) {} # = {underline {"407"" N"}} {}} } {}

Got questions? Get instant answers now!

Two muscles in the back of the leg pull on the Achilles tendon as shown in [link] . What total force do they exert?

An Achilles tendon is shown in the figure. A vertical dotted line is shown at the middle of the top part. Two vectors inclined at twenty degree each with respect to the vertical dotted line are shown.
The Achilles tendon of the posterior leg serves to attach plantaris, gastrocnemius, and soleus muscles to calcaneus bone.
Got questions? Get instant answers now!

The upper leg muscle (quadriceps) exerts a force of 1250 N, which is carried by a tendon over the kneecap (the patella) at the angles shown in [link] . Find the direction and magnitude of the force exerted by the kneecap on the upper leg bone (the femur).

The figure shows a side view of the bones of a knee and the quadriceps muscle. The upper bone is inclined at fifty five degrees to the horizontal and the tension exerted by the quadriceps muscle is one thousand two hundred and fifty newtons. The tendon from the knee cap to the lower bone is inclined at seventy five degrees below the horizontal. The force in this direction is the same as that provided by the quadriceps.
The knee joint works like a hinge to bend and straighten the lower leg. It permits a person to sit, stand, and pivot.

1.1 × 10 3 N θ = 190 º ccw from positive x axis alignl { stack { size 12{1 "." 1 times "10" rSup { size 8{3} } `N} {} #θ="190"°`"ccw"`"from"`"positive"`x`"axis" {} } } {}

Got questions? Get instant answers now!

A device for exercising the upper leg muscle is shown in [link] , together with a schematic representation of an equivalent lever system. Calculate the force exerted by the upper leg muscle to lift the mass at a constant speed. Explicitly show how you follow the steps in the Problem-Solving Strategy for static equilibrium in Applications of Statistics, Including Problem-Solving Strategies .

A machine for leg exercise is shown. A wire is tied to a cuff around the lower part of a leg. This wire passes over three pulleys and is connected to a ten kg weight. The tension in the wire is shown near the leg in the direction of the wire. On the leg, a point on knee is shown as the pivot. The distance between the pivot and the point where the wire is tied to the leg is thirty five centimeters. A free-body diagram of the leg, represented as a pole, is shown.
A mass is connected by pulleys and wires to the ankle in this exercise device.
Got questions? Get instant answers now!

A person working at a drafting board may hold her head as shown in [link] , requiring muscle action to support the head. The three major acting forces are shown. Calculate the direction and magnitude of the force supplied by the upper vertebrae F V size 12{F rSub { size 8{V} } } {} to hold the head stationary, assuming that this force acts along a line through the center of mass as do the weight and muscle force.

The head of a person working at a drafting board in relaxed position is shown. The inclination of the head is theta to the horizontal and the center of gravity is near the top of the head. The weight of the head is fifty newtons and is acting downward at the center of gravity. Three major forces are shown. The force exerted along the neck is sixty newtons.

F V = 97 N, θ = 59º size 12{F rSub { size 8{V} } ="97"`N,`θ="59"°} {}

Got questions? Get instant answers now!

Questions & Answers

can some one tell me how v=RW is dimensionally correct?
YAGNAK Reply
ms-1 = m X Hz
babar
What is displacement
Megha Reply
shortest distance b/w two points
bilal
distance+direction
A.d
explain distanace+direction
bilal
the change of postion from one point to another with direction
A.d
if we change thrle direction then displacement is destroy?
bilal
change the direction then?
bilal
what do u mean by i didnt understand bro
A.d
displacement is one dimension...?
bilal
displacement is the total length an object cover from initial to the final with respect to direction as Well as time.
mohammed
thanks
bilal
what are the differences between vector and scalar quantity
Kabba Reply
vector is assigned to those physical quantity that has both direction and magnitude! example velocity ,scalar just has magnitude example Mass of an object. hope it helps
Mudang
velocity is produce in fan...?
bilal Reply
how many electrons are there in 5 microcouloumb
Obed Reply
can a given total amount of mechanical energy be totally converted into heat energy..if so give example
Muhammad Reply
human running
Emmanuel
what is the fumula for calculating specific heat capacity, fusion,fission and vaporization?
Dohn Reply
Q=cm(∆t)
Emmanuel
Q=cm∆T
Muhammad
what is difference b/w vaporization and evaporation
Muhammad
evaporation is the process of extracting moisture while vaporization is process of becoming a vapor or gas
Emmanuel
From a molecular standpoint they are both cooling processes. Also, you may want to explore states of matter😊 #myTwoCents ~Shi~
Shii
cooling is a similarlity in both process I am confused in difference
Muhammad
1- Evaporation is a process where a liquid change to gas without reaching its boiling point. 2- Vaporization is a process where a liquid change to gas after reaching its boiling point. 3- Sublimation is a process where a solid changes into vapour without passing through a liquid state
Victor
I see. Evaporation is a type of vaporization, that occurs on the surface of a liquid as it changes into the gaseous phase before reaching its boiling point. hope that aids
Shii
vaporisation is cooling process while vaporization is heating process
Emmanuel
I mean to write evaporation is an heating process while vaporization is cooling process
Emmanuel
Yea here are two applications. 1- your wet washed clothes dry under the sun, the water EVAPORATES 2- when u are cooking, it reaches a point where u need to add more water because the water you added previously is getting dried. this is VAPORIZATION. Am not sure which is a cooling or heating process
Victor
vaporization occur only when the evaporation get to level where the above cloud is been (saturated) so cooling take place and started to change to liquid (eg rain fall)
Emmanuel
They are both properties of the same process so they're both cooling
Shii
what about sublimation? cooling or heating process?
Victor
exact
Muhammad
evaporation is the increase in kinetic energy of the liquid which can be gone by adding heat
Emmanuel
so its an heating process
Emmanuel
sublimation is when a solid change to gas
Emmanuel
evaporation is very definitely a cooling process. respectfully@Emmanuel when liquid turns to gas it requires more energy from its surroundings, this energy is in the form of heat, and when heat energy leaves the evaporating liquid it leaves it cooler. Thus, cooling process.
Shii
.
Shii
evaporation is very definitely a cooling process. respectfully@Emmanuel
Shii
kk
Emmanuel
You're right @Shi. I get your point
Victor
eascape velocity on the surface of Earth is 11.2 kms-1 the escape velocity on the surface of another planet of same mass as that of Earth but of 1/4 times of radius of Earth is a5.6kms-1 b11.2 kms-1 c22.4kms-1 d5.6ms-1
Muhammad
Emm.. is that a question? or..
Victor
it is McQ
Muhammad
a)5.6km/s
Alvis
c= Q/cm◇T
A.d
it's answer is 22.4
Muhammad
units...
Shii
vital
Shii
the time period of the artificial satellite is given by ?
raza
Why is there no 2nd harmonic in the classical electron orbit?
Shree Reply
how to reform magnet after been demagneted
Inuwa Reply
A petrol engine has a output of 20 kilowatts and uses 4.5 kg of fuel for each hour of running. The energy given out when 1 kg of petrol is burnt is 4.8 × 10 to the power of 7 Joules. a) What is the energy output of the engine every hour? b) What is the energy input of the engine every hour?
Morris Reply
Issac Newton devised a genius way to calculate changing quantities...
Shii
what is the error during taking work done of a body..
Aliyu Reply
what kind of error do you think? and work is held by which force?
Daniela
I am now in this group
smart
theory,laws,principles and what-a-view are not defined. why? you
Douglas Reply
A simple pendulum is used in a physics laboratory experiment to obtain an experimental value for the gravitational acceleration, g . A student measures the length of the pendulum to be 0.510 meters, displaces it 10 o from the equilibrium position, and releases it. Using a s
Emmanuel Reply
so what question are you passing across... sir?
Olalekan
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed?
Emmanuel Reply
54 joule
babar
how?
rakesh
Reduce that two body problem into one body problem. Apply potential and k. E formula to get total energy of the system
rakesh
i dont think dere is any potential energy... by d virtue of no height present
Olalekan
there is compressed energy,dats only potential energy na?
rakesh
yes.. but... how will u approach that question without The Height in the question?
Olalekan
Can you explain how you get 54J?
Emmanuel
Because mine is 36J
Emmanuel
got 36J too
Douglas
OK the answer is 54J Babar is correct
Emmanuel
Conservation of Momentum
Emmanuel
woow i see.. can you give the formula for this
joshua
Two masses of 2 kg and 4 kg are held with a compressed spring between them. If the masses are released, the spring will push them away from each other. If the smaller mass moves off with a velocity of 6m/s, what is the stored energy in the spring when it is compressed? Asume there is no external force.
Emmanuel Reply
Please help!
Emmanuel
please help find dy/dx 2x-y/x+y
Inuwa
By using the Quotient Rule dy/dx = 3y/(x +y)²
Emmanuel
3y/(x+y)²
Emmanuel
may be by using MC^2=MC^2 and Total energy=kinetic energy +potential energy so 1st find kinetic energy and den find potential energy which is stored energy
rakesh
i think i m correct
rakesh
But how?
Emmanuel
3y/(x+y)²
Douglas

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask