<< Chapter < Page Chapter >> Page >

Determine the combined intensity of two waves: perfect constructive interference

If two identical waves, each having an intensity of 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} , interfere perfectly constructively, what is the intensity of the resulting wave?

Strategy

We know from Superposition and Interference that when two identical waves, which have equal amplitudes X size 12{X} {} , interfere perfectly constructively, the resulting wave has an amplitude of 2 X size 12{2X} {} . Because a wave’s intensity is proportional to amplitude squared, the intensity of the resulting wave is four times as great as in the individual waves.

Solution

  1. Recall that intensity is proportional to amplitude squared.
  2. Calculate the new amplitude:
    I X 2 = 2 X 2 = 4 X 2 . size 12{I rSup { size 8{'} } prop left (X rSup { size 8{'} } right ) rSup { size 8{2} } = left (2X right ) rSup { size 8{2} } =4X rSup { size 8{2} } } {}
  3. Recall that the intensity of the old amplitude was:
    I X 2 . size 12{I rSup { size 8{'} } prop X rSup { size 8{2} } } {}
  4. Take the ratio of new intensity to the old intensity. This gives:
    I I = 4 . size 12{ { {I} over {I rSup { size 8{'} } } } =4} {}
  5. Calculate to find I size 12{I'} {} :
    I = 4 I = 4 . 00 W/m 2 . size 12{I'=4I=4 "." "00"`"W/m" rSup { size 8{2} } } {}

Discussion

The intensity goes up by a factor of 4 when the amplitude doubles. This answer is a little disquieting. The two individual waves each have intensities of 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} , yet their sum has an intensity of 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} , which may appear to violate conservation of energy. This violation, of course, cannot happen. What does happen is intriguing. The area over which the intensity is 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} is much less than the area covered by the two waves before they interfered. There are other areas where the intensity is zero. The addition of waves is not as simple as our first look in Superposition and Interference suggested. We actually get a pattern of both constructive interference and destructive interference whenever two waves are added. For example, if we have two stereo speakers putting out 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} each, there will be places in the room where the intensity is 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} , other places where the intensity is zero, and others in between. [link] shows what this interference might look like. We will pursue interference patterns elsewhere in this text.

Two speakers are shown at the top of the figure at left and right side. Rarefactions are shown as dotted curves and compression as dark curves. The interference of the sound waves from these two speakers is shown. There are some red spots, showing constructive interference, are shown on the interfering waves.
These stereo speakers produce both constructive interference and destructive interference in the room, a property common to the superposition of all types of waves. The shading is proportional to intensity.

Which measurement of a wave is most important when determining the wave's intensity?

Amplitude, because a wave’s energy is directly proportional to its amplitude squared.

Section summary

Intensity is defined to be the power per unit area:

I = P A size 12{I= { {P} over {A} } } {} and has units of W/m 2 size 12{"W/m" rSup { size 8{2} } } {} .

Conceptual questions

Two identical waves undergo pure constructive interference. Is the resultant intensity twice that of the individual waves? Explain your answer.

Circular water waves decrease in amplitude as they move away from where a rock is dropped. Explain why.

Problems&Exercises

Medical Application

Ultrasound of intensity 1 . 50 × 10 2 W/m 2 size 12{1 "." "50" times "10" rSup { size 8{2} } `"W/m" rSup { size 8{2} } } {} is produced by the rectangular head of a medical imaging device measuring 3.00 by 5.00 cm. What is its power output?

0.225 W

The low-frequency speaker of a stereo set has a surface area of 0 . 05 m 2 size 12{0 "." "05"`m rSup { size 8{2} } } {} and produces 1W of acoustical power. What is the intensity at the speaker? If the speaker projects sound uniformly in all directions, at what distance from the speaker is the intensity 0 . 1 W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

To increase intensity of a wave by a factor of 50, by what factor should the amplitude be increased?

7.07

Engineering Application

A device called an insolation meter is used to measure the intensity of sunlight has an area of 100 cm 2 and registers 6.50 W. What is the intensity in W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

Astronomy Application

Energy from the Sun arrives at the top of the Earth’s atmosphere with an intensity of 1.30 kW/m 2 . size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} How long does it take for 1.8 × 10 9 J size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} to arrive on an area of 1 . 00 m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

16.0 d

Suppose you have a device that extracts energy from ocean breakers in direct proportion to their intensity. If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high, how much will it produce when they are 0.600 m high?

2.50 kW

Engineering Application

(a) A photovoltaic array of (solar cells) is 10.0% efficient in gathering solar energy and converting it to electricity. If the average intensity of sunlight on one day is 700 W/m 2 , size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} what area should your array have to gather energy at the rate of 100 W? (b) What is the maximum cost of the array if it must pay for itself in two years of operation averaging 10.0 hours per day? Assume that it earns money at the rate of 9.00 ¢ per kilowatt-hour.

A microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00 × 10 –5 W/m 2 , size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} but is turned up until the amplitude increases by 30.0%, what is the new intensity?

3.38 × 10 –5 W/m 2

Medical Application

(a) What is the intensity in W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 500 J of energy into a circular spot 2.00 mm in diameter in 4.00 s? (b) Discuss how this intensity compares to the average intensity of sunlight (about 700 W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics -- hlca 1104. OpenStax CNX. May 18, 2013 Download for free at http://legacy.cnx.org/content/col11525/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics -- hlca 1104' conversation and receive update notifications?

Ask