<< Chapter < Page Chapter >> Page >

A similar calculation for the simple pendulum produces a similar result, namely:

ω max = g L θ max . size 12{ω rSub { size 8{"max"} } = sqrt { { {g} over {L} } } θ rSub { size 8{"max"} } } {}

Determine the maximum speed of an oscillating system: a bumpy road

Suppose that a car is 900 kg and has a suspension system that has a force constant k = 6 . 53 × 10 4 N/m size 12{k=6 "." "53" times "10" rSup { size 8{4} } `"N/m"} {} . The car hits a bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for v max size 12{v rSub { size 8{"max"} } } {} given in v max = k m X size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {} to determine the maximum vertical velocity. The variables m size 12{m} {} and k size 12{k} {} are given in the problem statement, and the maximum displacement X size 12{X} {} is 0.100 m.

Solution

  1. Identify known.
  2. Substitute known values into v max = k m X size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {} :
    v max = 6 . 53 × 10 4 N/m 900 kg (0 . 100 m) . size 12{v size 8{"max"}= sqrt { { {6 "." "53" times "10" rSup { size 8{4} } "N/m"} over {"900"" kg"} } } 0 "." "100"" m"} {}
  3. Calculate to find v max = 0.852 m/s . size 12{v rSub { size 8{"max"} } } {}

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find v max size 12{v rSub { size 8{"max"} } } {} . We could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited .

The small vertical displacement y size 12{v rSub { size 8{"max"} } } {} of an oscillating simple pendulum, starting from its equilibrium position, is given as

y ( t ) = a sin ωt , size 12{y \( t \) =a"sin"ωt} {}

where a size 12{a} {} is the amplitude, ω size 12{ω} {} is the angular velocity and t size 12{t} {} is the time taken. Substituting ω = T size 12{ω= { {2π} over {T} } } {} , we have

y t = a sin t T . size 12{y left (t right )=a"sin" left ( { {2πt} over {T} } right )} {}

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

v ( t ) = 2 T cos t T , size 12{v \( t \) = { {2aπ} over {T} } "cos" left ( { {2πt} over {T} } right )} {}

so the motion of the pendulum is a function of time.

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system is equal?

The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand with greater force, which hurts more.

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

You could increase the mass of the object that is oscillating.

Section summary

  • Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being constant:
    1 2 mv 2 + 1 2 kx 2 = constant. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } =" constant"} {}
  • Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is smaller for objects that have larger masses:
    v max = k m X . size 12{v rSub { size 8{"max"} } = sqrt { { {k} over {m} } } X} {}

Conceptual questions

Explain in terms of energy how dissipative forces such as friction reduce the amplitude of a harmonic oscillator. Also explain how a driving mechanism can compensate. (A pendulum clock is such a system.)

Problems&Exercises

The length of nylon rope from which a mountain climber is suspended has a force constant of 1 . 40 × 10 4 N/m size 12{1 "." "40" times "10" rSup { size 8{4} } "N/m"} {} .

(a) What is the frequency at which he bounces, given his mass plus and the mass of his equipment are 90.0 kg?

(b) How much would this rope stretch to break the climber’s fall if he free-falls 2.00 m before the rope runs out of slack? Hint: Use conservation of energy.

(c) Repeat both parts of this problem in the situation where twice this length of nylon rope is used.

(a) 1.99 Hz size 12{ "1.99 Hz" } {}

(b) 50.2 cm

(c) 1.41 Hz, 0.710 m

Engineering Application

Near the top of the Citigroup Center building in New York City, there is an object with mass of 4 . 00 × 10 5 kg size 12{4 "." "00" times "10" rSup { size 8{5} } "kg"} {} on springs that have adjustable force constants. Its function is to dampen wind-driven oscillations of the building by oscillating at the same frequency as the building is being driven—the driving force is transferred to the object, which oscillates instead of the entire building. (a) What effective force constant should the springs have to make the object oscillate with a period of 2.00 s? (b) What energy is stored in the springs for a 2.00-m displacement from equilibrium?

(a) 3 . 95 × 10 6 N/m size 12{3 "." "95" times "10" rSup { size 8{6} } "N/m"} {}

(b) 7 . 90 × 10 6 J size 12{7 "." "90" times "10" rSup { size 8{6} } "J"} {}

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
4
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask