<< Chapter < Page Chapter >> Page >
  • State the first condition of equilibrium.
  • Explain static equilibrium.
  • Explain dynamic equilibrium.

The first condition necessary to achieve equilibrium is the one already mentioned: the net external force on the system must be zero. Expressed as an equation, this is simply

net F = 0 size 12{"net "F=0} {}

Note that if net F size 12{F} {} is zero, then the net external force in any direction is zero. For example, the net external forces along the typical x - and y -axes are zero. This is written as

net F x = 0 and F y = 0 size 12{"net "F rSub { size 8{y} } =0} {}

[link] and [link] illustrate situations where net F = 0 size 12{"net"`F=0} {} for both static equilibrium    (motionless), and dynamic equilibrium    (constant velocity).

In the figure, a stationary man is standing on the ground. His feet are at a distance apart. His hands are at his waist. The left side is labeled as net F is equal to zero. At the right side a free body diagram is shown with one point and two arrows, one vertically upward labeled as N and another vertically downward labeled as W, from the point.
This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case.
A moving car is shown. Four normal vectors at each wheel are shown. At the rear wheel, a rightward arrow labeled as applied F is shown. Another arrow, which is labeled as f and points left, toward the front of the car, is also shown. A green vector at the top of the car shows the constant velocity vector. A free-body diagram is shown at the right with a point. From the point, the weight of the car is downward. Friction force vector f is toward left and applied force vector is toward right. Four normal vectors are shown upward above the point.
This car is in dynamic equilibrium because it is moving at constant velocity. There are horizontal and vertical forces, but the net external force in any direction is zero. The applied force F app size 12{F rSub { size 8{"app"} } } {} between the tires and the road is balanced by air friction, and the weight of the car is supported by the normal forces, here shown to be equal for all four tires.

However, it is not sufficient for the net external force of a system to be zero for a system to be in equilibrium. Consider the two situations illustrated in [link] and [link] where forces are applied to an ice hockey stick lying flat on ice. The net external force is zero in both situations shown in the figure; but in one case, equilibrium is achieved, whereas in the other, it is not. In [link] , the ice hockey stick remains motionless. But in [link] , with the same forces applied in different places, the stick experiences accelerated rotation. Therefore, we know that the point at which a force is applied is another factor in determining whether or not equilibrium is achieved. This will be explored further in the next section.

A hockey stick is shown. At the middle point of the stick, two red colored force vectors are shown one pointing to the right and the other to the left. The line of action of the two forces is the same. The top of the figure is labeled as net force F is equal to zero. At the lower right side the free body diagram, a point with two horizontal vectors, each labeled F and directed away from the point, is shown.
An ice hockey stick lying flat on ice with two equal and opposite horizontal forces applied to it. Friction is negligible, and the gravitational force is balanced by the support of the ice (a normal force). Thus, net F = 0 size 12{"net"`F=0} {} . Equilibrium is achieved, which is static equilibrium in this case.
A hockey stick is shown. The two force vectors acting on the hockey stick are shown, one pointing to the right and the other to the left. The lines of action of the two forces are different. Each vector is labeled as F. At the top and the bottom of the stick there are two circular arrows, showing the clockwise direction of the rotation. At the lower right side the free body diagram, a point with two horizontal vectors, each labeled F and directed away from the point, is shown.
The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here net F = 0 size 12{"net"`F=0} {} but the system is not at equilibrium. Hence, the net F = 0 size 12{"net"`F=0} {} is a necessary—but not sufficient—condition for achieving equilibrium.

Phet explorations: torque

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of inertia, angular momentum and torque.

Torque

Section summary

  • Statics is the study of forces in equilibrium.
  • Two conditions must be met to achieve equilibrium, which is defined to be motion without linear or rotational acceleration.
  • The first condition necessary to achieve equilibrium is that the net external force on the system must be zero, so that net F = 0 size 12{F rSub { size 8{ ital "net"} } =0} {} .

Conceptual questions

What can you say about the velocity of a moving body that is in dynamic equilibrium? Draw a sketch of such a body using clearly labeled arrows to represent all external forces on the body.

Got questions? Get instant answers now!

Under what conditions can a rotating body be in equilibrium? Give an example.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask