<< Chapter < Page Chapter >> Page >
PE s = 1 2 kx 2 , size 12{"PE" rSub { size 8{s} } = { {1} over {2} } ital "kx" rSup { size 8{2} } } {}

where k size 12{k} {} is the spring’s force constant and x size 12{x} {} is the displacement from its undeformed position. The potential energy represents the work done on the spring and the energy stored in it as a result of stretching or compressing it a distance x size 12{x} {} . The potential energy of the spring PE s size 12{"PE" rSub { size 8{s} } } {} does not depend on the path taken; it depends only on the stretch or squeeze x size 12{x} {} in the final configuration.

An undeformed spring fixed at one end with no potential energy. (b) A spring fixed at one end and stretched by a distance x by a force F equal to k x. Work done W is equal to one half k x squared. P E s is equal to one half k x squared. (c) A graph of force F versus elongation x in the spring. A straight line inclined to x axis starts from origin. The area under this line forms a right triangle with base of x and height of k x. Area of this triangle is equal to one half k x squared.
(a) An undeformed spring has no PE s size 12{"PE" rSub { size 8{s} } } {} stored in it. (b) The force needed to stretch (or compress) the spring a distance x size 12{x} {} has a magnitude F = kx size 12{F= ital "kx"} {} , and the work done to stretch (or compress) it is 1 2 kx 2 size 12{ { {1} over {2} } ital "kx" rSup { size 8{2} } } {} . Because the force is conservative, this work is stored as potential energy ( PE s ) size 12{ \( "PE" rSub { size 8{s} } \) } {} in the spring, and it can be fully recovered. (c) A graph of F size 12{F} {} vs. x size 12{x} {} has a slope of k size 12{k} {} , and the area under the graph is 1 2 kx 2 size 12{ { {1} over {2} } ital "kx" rSup { size 8{2} } } {} . Thus the work done or potential energy stored is 1 2 kx 2 .

The equation PE s = 1 2 kx 2 size 12{"PE" rSub { size 8{s} } = { {1} over {2} } ital "kx" rSup { size 8{2} } } {} has general validity beyond the special case for which it was derived. Potential energy can be stored in any elastic medium by deforming it. Indeed, the general definition of potential energy    is energy due to position, shape, or configuration. For shape or position deformations, stored energy is PE s = 1 2 kx 2 size 12{"PE" rSub { size 8{s} } = { {1} over {2} } ital "kx" rSup { size 8{2} } } {} , where k size 12{k} {} is the force constant of the particular system and x size 12{x} {} is its deformation. Another example is seen in [link] for a guitar string.

A six-string guitar is placed vertically. The left-most string is plucked in the left direction with a force F shown by an arrow pointing left. The displacement of the string from the mean position is d. The plucked string is labeled P E sub string, to represent the potential energy of the string.
Work is done to deform the guitar string, giving it potential energy. When released, the potential energy is converted to kinetic energy and back to potential as the string oscillates back and forth. A very small fraction is dissipated as sound energy, slowly removing energy from the string.

Conservation of mechanical energy

Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system equals its change in kinetic energy. In equation form, this is

W net = 1 2 mv 2 1 2 mv 0 2 = Δ KE. size 12{W rSub { size 8{"net"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } =Δ"KE" "." } {}

If only conservative forces act, then

W net = W c , size 12{W rSub { size 8{"net"} } =W rSub { size 8{c} } } {}

where W c is the total work done by all conservative forces. Thus,

W c = Δ KE. size 12{W rSub { size 8{c} } =Δ"KE"} {}

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy. That is, W c = Δ PE size 12{W rSub { size 8{c} } = +- D"PE"} {} . Therefore,

Δ PE = Δ KE size 12{ - Δ"PE"=Δ"KE"} {}

or

Δ KE + Δ PE = 0 . size 12{Δ"KE"+Δ"PE"=0} {}

This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces. That is,

KE + PE = constant     or KE i + PE i = KE f + PE f } (conservative forces only),

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is known as the conservation of mechanical energy    principle. Remember that this applies to the extent that all the forces are conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical energy    , ( KE + PE ) size 12{ \( "KE"+"PE" \) } {} . In a system that experiences only conservative forces, there is a potential energy associated with each force, and the energy only changes form between KE size 12{"KE"} {} and the various types of PE size 12{"PE"} {} , with the total energy remaining constant.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask