<< Chapter < Page Chapter >> Page >
  • Calculate coefficient of friction on a car tire.
  • Calculate ideal speed and angle of a car on a turn.

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force    . The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force is mass times acceleration: net F = ma size 12{F= ital "ma"} {} . For uniform circular motion, the acceleration is the centripetal acceleration— a = a c size 12{a=a rSub { size 8{c} } } {} . Thus, the magnitude of centripetal force F c size 12{F rSub { size 8{c} } } {} is

F c = m a c . size 12{F rSub { size 8{c} } =ma rSub { size 8{c} } } {}

By using the expressions for centripetal acceleration a c size 12{a rSub { size 8{c} } } {} from a c = v 2 r ; a c = 2 size 12{a rSub { size 8{c} } = { {v rSup { size 8{2} } } over {r} } ;``a rSub { size 8{c} } =rω rSup { size 8{2} } } {} , we get two expressions for the centripetal force F c size 12{F rSub { size 8{c} } } {} in terms of mass, velocity, angular velocity, and radius of curvature:

F c = m v 2 r ; F c = mr ω 2 . size 12{F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } ;``F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } {}

You may use whichever expression for centripetal force is more convenient. Centripetal force F c size 12{F rSub { size 8{c} } } {} is always perpendicular to the path and pointing to the center of curvature, because a c size 12{a rSub { size 8{c} } } {} is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r size 12{r} {} , you get

r = mv 2 F c . size 12{r= { { ital "mv" rSup { size 8{2} } } over {F rSub { size 8{c} } } } } {}

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.

The given figure consists of two semicircles, one over the other. The top semicircle is bigger and the one below is smaller. In both the figures, the direction of the path is given along the semicircle in the counter-clockwise direction. A point is shown on the path, where the radius from the circle, r, is shown with an arrow from the center of the circle. At the same point, the centripetal force is shown in the opposite direction to that of radius arrow. The velocity, v, is shown along this point in the left upward direction and is perpendicular to the force. In both the figures, the velocity is same, but the radius is smaller and centripetal force is larger in the lower figure.
The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes uniform circular motion. The larger the F c size 12{F rSub { size 8{c} } } {} , the smaller the radius of curvature r size 12{r} {} and the sharper the curve. The second curve has the same v size 12{v} {} , but a larger F c size 12{F rSub { size 8{c} } } {} produces a smaller r size 12{ { {r}} sup { ' }} {} .

What coefficient of friction do car tires need on a flat curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction being the reason that keeps the car from slipping (see [link] ).

Strategy and Solution for (a)

We know that F c = mv 2 r . Thus,

F c = mv 2 r = ( 900 kg ) ( 25.0 m/s ) 2 ( 500 m ) = 1125 N.

Strategy for (b)

[link] shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We know that the maximum static friction (at which the tires roll but do not slip) is μ s N size 12{μ rSub { size 8{s} } N} {} , where μ s size 12{μ rSub { size 8{s} } } {} is the static coefficient of friction and N is the normal force. The normal force equals the car’s weight on level ground, so that N = mg . Thus the centripetal force in this situation is

F c = f = μ s N = μ s mg . size 12{F rSub { size 8{c} } =f=μ rSub { size 8{s} } N=μ rSub { size 8{s} } ital "mg"} {}

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for F c size 12{F rSub { size 8{c} } } {} from the equation

F c = m v 2 r F c = mr ω 2 } , size 12{ left none matrix { F rSub { size 8{c} } =m { {v rSup { size 8{2} } } over {r} } {} ##F rSub { size 8{c} } = ital "mr"ω rSup { size 8{2} } } right rbrace ,} {}

Questions & Answers

derivation of ohms law
Kazeem Reply
derivation of resistance
Kazeem
R=v/I where R=resistor, v=voltage, I=current
Kazeem
magnitude
Arjune
Electric current is the flow of electrons
Kelly Reply
is there really flow of electrons exist?
babar
Yes It exists
Cffrrcvccgg
explain plz how electrons flow
babar
if electron flows from where first come and end the first one
babar
an electron will flow accross a conductor because or when it posseses kinectic energy
Cffrrcvccgg
electron can not flow jist trasmit electrical energy
ghulam
free electrons of conductor
ankita
electric means the flow heat current.
Serah Reply
electric means the flow of heat current in a circuit.
Serah
What is electric
Manasseh Reply
electric means?
ghulam
electric means the flow of heat current in a circuit.
Serah
a boy cycles continuously through a distance of 1.0km in 5minutes. calculate his average speed in ms-1(meter per second). how do I solve this
Jenny Reply
speed = distance/time be sure to convert the km to m and minutes to seconds check my utube video "mathwithmrv speed"
PhysicswithMrV
d=1.0km÷1000=0.001 t=5×60=300s s=d\t s=0.001/300=0.0000033m\s
Serah
why we cannot use DC instead of AC in a transformer
kusshaf Reply
becuse the d .c cannot travel for long distance trnsmission
ghulam
what is physics
Chiwetalu Reply
branch of science which deals with matter energy and their relationship between them
ghulam
Life science
the
what is heat and temperature
Kazeem Reply
how does sound affect temperature
Clement Reply
sound is directly proportional to the temperature.
juny
how to solve wave question
Wisdom Reply
I would like to know how I am not at all smart when it comes to math. please explain so I can understand. sincerly
Emma
Just know d relationship btw 1)wave length 2)frequency and velocity
Talhatu
First of all, you are smart and you will get it👍🏽... v = f × wavelength see my youtube channel: "mathwithmrv" if you want to know how to rearrange equations using the balance method
PhysicswithMrV
nice self promotion though xD
Beatrax
thanks dear
Chuks
hi pls help me with this question A ball is projected vertically upwards from the top of a tower 60m high with a velocity of 30ms1.what is the maximum height above the ground level?how long does it take to reach the ground level?
mahmoud
please guys help, what is the difference between concave lens and convex lens
Vincent Reply
convex lens brings rays of light to a focus while concave diverges rays of light
Christian
for mmHg to kPa yes
Matthew
it depends on the size
Matthew Reply
please what is concave lens
Vincent
a lens which diverge the ray of light
rinzuala
concave diverges light
Matthew
thank you guys
Vincent
A diverging lens
Yusuf
What is isotope
Yusuf
each of two or more forms of the same element that contain equal numbers of protons but different numbers of neutrons in their nuclei, and hence differ in relative atomic mass but not in chemical properties; in particular, a radioactive form of an element. "some elements have only one stable isotope
Karthi
what is wire wound resistors?
Naveedkhan Reply
What are the best colleges to go to for physics
Matthew Reply
I would like to know this too
Trevor
How do I calculate uncertainty in a frequency?
Rebecca Reply
Calculate . ..
Olufunsho
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask