<< Chapter < Page Chapter >> Page >


Conservation of energy and momentum often results in energy transfer to a less massive object in a collision. This was discussed in detail in Work, Energy, and Energy Resources , for example.

Different types of radiation have different ranges when compared at the same energy and in the same material. Alphas have the shortest range, betas penetrate farther, and gammas have the greatest range. This is directly related to charge and speed of the particle or type of radiation. At a given energy, each α , β , or γ will produce the same number of ionizations in a material (each ionization requires a certain amount of energy on average). The more readily the particle produces ionization, the more quickly it will lose its energy. The effect of charge is as follows: The α size 12{α} {} has a charge of + 2 q e , the β has a charge of q e size 12{ - 2q rSub { size 8{e} } } {} , and the γ size 12{γ} {} is uncharged. The electromagnetic force exerted by the α size 12{α} {} is thus twice as strong as that exerted by the β size 12{β} {} and it is more likely to produce ionization. Although chargeless, the γ size 12{γ} {} does interact weakly because it is an electromagnetic wave, but it is less likely to produce ionization in any encounter. More quantitatively, the change in momentum Δ p size 12{Δp} {} given to a particle in the material is Δ p = F Δ t , where F size 12{F} {} is the force the α , β , or γ exerts over a time Δ t size 12{Δt} {} . The smaller the charge, the smaller is F size 12{F} {} and the smaller is the momentum (and energy) lost. Since the speed of alphas is about 5% to 10% of the speed of light, classical (non-relativistic) formulas apply.

The speed at which they travel is the other major factor affecting the range of α size 12{α} {} s, β size 12{β} {} s, and γ size 12{γ} {} s. The faster they move, the less time they spend in the vicinity of an atom or a molecule, and the less likely they are to interact. Since α size 12{α} {} s and β size 12{β} {} s are particles with mass (helium nuclei and electrons, respectively), their energy is kinetic, given classically by 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} . The mass of the β size 12{β} {} particle is thousands of times less than that of the α size 12{α} {} s, so that β size 12{β} {} s must travel much faster than α size 12{α} {} s to have the same energy. Since β size 12{β} {} s move faster (most at relativistic speeds), they have less time to interact than α size 12{α} {} s. Gamma rays are photons, which must travel at the speed of light. They are even less likely to interact than a β size 12{β} {} , since they spend even less time near a given atom (and they have no charge). The range of γ size 12{γ} {} s is thus greater than the range of β size 12{β} {} s.

Alpha radiation from radioactive sources has a range much less than a millimeter of biological tissues, usually not enough to even penetrate the dead layers of our skin. On the other hand, the same α radiation can penetrate a few centimeters of air, so mere distance from a source prevents α size 12{α} {} radiation from reaching us. This makes α size 12{α} {} radiation relatively safe for our body compared to β and γ size 12{γ} {} radiation. Typical β radiation can penetrate a few millimeters of tissue or about a meter of air. Beta radiation is thus hazardous even when not ingested. The range of β size 12{β} {} s in lead is about a millimeter, and so it is easy to store β sources in lead radiation-proof containers. Gamma rays have a much greater range than either α size 12{α} {} s or β size 12{β} {} s. In fact, if a given thickness of material, like a lead brick, absorbs 90% of the γ s, then a second lead brick will only absorb 90% of what got through the first. Thus, γ s do not have a well-defined range; we can only cut down the amount that gets through. Typically, γ size 12{γ} {} s can penetrate many meters of air, go right through our bodies, and are effectively shielded (that is, reduced in intensity to acceptable levels) by many centimeters of lead. One benefit of γ size 12{γ} {} s is that they can be used as radioactive tracers (see [link] ).

This figure shows four images of a skeleton of a human. Different parts of the body show bright spots wherever the bone cells are most active, indicating bone cancer.
This image of the concentration of a radioactive tracer in a patient’s body reveals where the most active bone cells are, an indication of bone cancer. A short-lived radioactive substance that locates itself selectively is given to the patient, and the radiation is measured with an external detector. The emitted γ size 12{γ} {} radiation has a sufficient range to leave the body—the range of α size 12{α} {} s and β size 12{β} {} s is too small for them to be observed outside the patient. (credit: Kieran Maher, Wikimedia Commons)

Phet explorations: beta decay

Watch beta decay occur for a collection of nuclei or for an individual nucleus.

Beta Decay

Section summary

  • Some nuclei are radioactive—they spontaneously decay destroying some part of their mass and emitting energetic rays, a process called nuclear radioactivity.
  • Nuclear radiation, like x rays, is ionizing radiation, because energy sufficient to ionize matter is emitted in each decay.
  • The range (or distance traveled in a material) of ionizing radiation is directly related to the charge of the emitted particle and its energy, with greater-charge and lower-energy particles having the shortest ranges.
  • Radiation detectors are based directly or indirectly upon the ionization created by radiation, as are the effects of radiation on living and inert materials.

Conceptual questions

Suppose the range for 5 . 0 MeV α size 12{5 "." "0 MeV" α} {} ray is known to be 2.0 mm in a certain material. Does this mean that every 5 . 0 MeV α size 12{5 "." "0 MeV" α} {} a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.

Got questions? Get instant answers now!

What is the difference between γ size 12{γ} {} rays and characteristic x rays? Is either necessarily more energetic than the other? Which can be the most energetic?

Got questions? Get instant answers now!

Ionizing radiation interacts with matter by scattering from electrons and nuclei in the substance. Based on the law of conservation of momentum and energy, explain why electrons tend to absorb more energy than nuclei in these interactions.

Got questions? Get instant answers now!

What characteristics of radioactivity show it to be nuclear in origin and not atomic?

Got questions? Get instant answers now!

What is the source of the energy emitted in radioactive decay? Identify an earlier conservation law, and describe how it was modified to take such processes into account.

Got questions? Get instant answers now!

Consider [link] . If an electric field is substituted for the magnetic field with positive charge instead of the north pole and negative charge instead of the south pole, in which directions will the α size 12{α} {} , β size 12{β} {} , and γ size 12{γ} {} rays bend?

Got questions? Get instant answers now!

Explain how an α size 12{α} {} particle can have a larger range in air than a β size 12{β} {} particle with the same energy in lead.

Got questions? Get instant answers now!

Arrange the following according to their ability to act as radiation shields, with the best first and worst last. Explain your ordering in terms of how radiation loses its energy in matter.

(a) A solid material with low density composed of low-mass atoms.

(b) A gas composed of high-mass atoms.

(c) A gas composed of low-mass atoms.

(d) A solid with high density composed of high-mass atoms.

Got questions? Get instant answers now!

Often, when people have to work around radioactive materials spills, we see them wearing white coveralls (usually a plastic material). What types of radiation (if any) do you think these suits protect the worker from, and how?

Got questions? Get instant answers now!

Questions & Answers

Is earth is an inertial frame?
Sahim Reply
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool that was in use in Europe, China and Russia, centuries before the adoption of the written Hindu–Arabic numeral system
Most welcome
Hey.. I've a question.
Sahim Reply
Is earth inertia frame?
only the center
What is an abucus?
what would be the correct interrogation "what is time?" or "how much has your watch ticked?"
prakash Reply
a load of 20N on a wire of cross sectional area 8×10^-7m produces an extension of 10.4m. calculate the young modules of the material of the wire is of length 5m
Ebenezer Reply
Young's modulus = stress/strain strain = extension/length (x/l) stress = force/area (F/A) stress/strain is F l/A x
so solve it
two bodies x and y start from rest and move with uniform acceleration of a and 4a respectively. if the bodies cover the same distance in terms of tx and ty what is the ratio of tx to ty
Oluwatola Reply
what is cesium atoms?
prakash Reply
The atoms which form the element Cesium are known as Cesium atoms.
A material that combines with and removes trace gases from vacuum tubes.
what is difference between entropy and heat capacity
Heat capacity can be defined as the amount of thermal energy required to warm the sample by 1°C. entropy is the disorder of the system. heat capacity is high when the disorder is high.
I want learn physics
Vinodhini Reply
sir how to understanding clearly
try to imagine everything you study in 3d
pls give me one title
displacement acceleration how understand
vernier caliper usage practically
karthik sir is there
what are the solution to all the exercise..?
What is realm
Vinodhini Reply
The quantum realm, also called the quantum scale, is a term of art inphysics referring to scales where quantum mechanical effects become important when studied as an isolated system. Typically, this means distances of 100 nanometers (10−9meters) or less or at very low temperature.
How to understand physics
Vinodhini Reply
i like physics very much
i want know physics practically where used in daily life
I want to teach physics very interesting to studentd
how can you build interest in physics
by reading it
understanding difficult
vinodhini mam, physics is used in our day to day life in all events..... everything happening around us can be explained in the base of physics..... saying simple stories happening in our daily life and relating it to physics and questioning students about how or why its happening like that can make
your class more interesting
anything send about physics daily life
How to understand easily
check out "LMES" youtube channel
even when you see this message in your phone...it works accord to a physics principle. you touch screen works based on physics, your internet works based on physics, etc....... check out google and search for it
hi vinodhini
Hi guys
what is mean by Newtonian principle of Relativity? definition and explanation with example
revolutionary Reply
what is art physics
Akinbulejo Reply
I've been trying to download a good and comprehensive textbook for physics, pls can somebody help me out?
try COLLEGE PHYSICS!! I think it will give you an edge.
c=1/c1+c2/1+c3 what is the answer
Akinbulejo Reply
got on answers bro
This may seem like a really stupid question, but is mechanical energy the same as potential energy? If not, what is the difference?
Nikki Reply
what is c=1\c1,c=2\c2,c=3\c3
mechanical energy is of two types 1: kinetic energy 2: potential energy,so, potential energy is actually the type of mechanical energy ,the mechanical due to position is designated as potential energy
Thank you!!!!!
Can someone possibly walk me through this problem? " A worker drives a 0.500 kg spike into a rail tie with a 2.50 kg sledgehammer. The hammer hits the spike with a speed of 65.0 m/s. If one-third Of the hammer's kinetic energy is converted to the internal energy of rhe hammer and spike.
how much does the total internal energy increase
you know the mass and the velocity of the hammer. therefore using the equation (mv^2)/2 you can find the kinetic energy. then take one third of this value and that will be your change in internal energy. here, the important thing is that spike is stationary so it does not contribute to initial Energ
Thabk you! :)
what is the formula for finding the to total capacitance in series arrangement
Austin Reply
Don't know
C = 1/C1+1/C2+1/C3
what is heat capacity?
smith Reply
Amount of heat that increases the temperature of 1 kg of matter by 1 degree(either celsius or kalvin)
it is the ratio between the amount of heat added to an object and the temperature change
what is the different between specific heat capacity and latent heat capacity?
Practice Key Terms 8

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?