<< Chapter < Page Chapter >> Page >
  • Explain the relationship between the energy of a photon in joules or electron volts and its wavelength or frequency.
  • Calculate the number of photons per second emitted by a monochromatic source of specific wavelength and power.

Ionizing radiation

A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ size 12{λ} {} of the radiation by

E = hf = hc λ (energy of a photon), size 12{E = ital "hf"= { { ital "hc"} over {λ} } } {}

where E size 12{E} {} is the energy of a single photon and c size 12{c} {} is the speed of light. When working with small systems, energy in eV is often useful. Note that Planck’s constant in these units is

h = 4 . 14 × 10 –15 eV s . size 12{h =" 4" "." "14 " times " 10" rSup { size 8{"–15"} } " eV " cdot " s"} {}

Since many wavelengths are stated in nanometers (nm), it is also useful to know that

hc = 1240 eV nm . size 12{ ital "hc" =" 1240 eV " cdot " nm"} {}

These will make many calculations a little easier.

All EM radiation is composed of photons. [link] shows various divisions of the EM spectrum plotted against wavelength, frequency, and photon energy. Previously in this book, photon characteristics were alluded to in the discussion of some of the characteristics of UV, x rays, and γ size 12{γ} {} rays, the first of which start with frequencies just above violet in the visible spectrum. It was noted that these types of EM radiation have characteristics much different than visible light. We can now see that such properties arise because photon energy is larger at high frequencies.

An electromagnetic spectrum is shown. Different types of radiation are indicated using double-sided arrows based on the ranges of their wavelength, energy, and frequency; the visible spectrum is shown, which is a very narrow band. The radio wave region is further segmented into A M radio, F M radio, and Microwaves bands.
The EM spectrum, showing major categories as a function of photon energy in eV, as well as wavelength and frequency. Certain characteristics of EM radiation are directly attributable to photon energy alone.
Representative energies for submicroscopic effects (order of magnitude only)
Rotational energies of molecules 10 5 size 12{"10" rSup { size 8{ - 5} } } {} eV
Vibrational energies of molecules 0.1 eV
Energy between outer electron shells in atoms 1 eV
Binding energy of a weakly bound molecule 1 eV
Energy of red light 2 eV
Binding energy of a tightly bound molecule 10 eV
Energy to ionize atom or molecule 10 to 1000 eV

Photons act as individual quanta and interact with individual electrons, atoms, molecules, and so on. The energy a photon carries is, thus, crucial to the effects it has. [link] lists representative submicroscopic energies in eV. When we compare photon energies from the EM spectrum in [link] with energies in the table, we can see how effects vary with the type of EM radiation.

Gamma rays , a form of nuclear and cosmic EM radiation, can have the highest frequencies and, hence, the highest photon energies in the EM spectrum. For example, a γ size 12{γ} {} -ray photon with f = 10 21 Hz size 12{f"= 10" rSup { size 8{"21"} } " Hz"} {} has an energy E = hf = 6.63 × 10 –13 J = 4 . 14 MeV. size 12{E = ital "hf""= 6" "." "63 " times " 10" rSup { size 8{"–13"} } " J"=4 "." "14"`"MeV"} {} This is sufficient energy to ionize thousands of atoms and molecules, since only 10 to 1000 eV are needed per ionization. In fact, γ size 12{γ} {} rays are one type of ionizing radiation    , as are x rays and UV, because they produce ionization in materials that absorb them. Because so much ionization can be produced, a single γ size 12{γ} {} -ray photon can cause significant damage to biological tissue, killing cells or damaging their ability to properly reproduce. When cell reproduction is disrupted, the result can be cancer, one of the known effects of exposure to ionizing radiation. Since cancer cells are rapidly reproducing, they are exceptionally sensitive to the disruption produced by ionizing radiation. This means that ionizing radiation has positive uses in cancer treatment as well as risks in producing cancer.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask