A certain 50.0-Hz AC power line radiates an electromagnetic wave having a maximum electric field strength of 13.0 kV/m. (a) What is the wavelength of this very low frequency electromagnetic wave? (b) What is its maximum magnetic field strength?
During normal beating, the heart creates a maximum 4.00-mV potential across 0.300 m of a person’s chest, creating a 1.00-Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?
(a) The ideal size (most efficient) for a broadcast antenna with one end on the ground is one-fourth the wavelength (
$\lambda /4$ ) of the electromagnetic radiation being sent out. If a new radio station has such an antenna that is 50.0 m high, what frequency does it broadcast most efficiently? Is this in the AM or FM band? (b) Discuss the analogy of the fundamental resonant mode of an air column closed at one end to the resonance of currents on an antenna that is one-fourth their wavelength.
(a) 1.50 × 10
^{6} Hz, AM band
(b) The resonance of currents on an antenna that is 1/4 their wavelength is analogous to the fundamental resonant mode of an air column closed at one end, since the tube also has a length equal to 1/4 the wavelength of the fundamental oscillation.
(a) What is the wavelength of 100-MHz radio waves used in an MRI unit? (b) If the frequencies are swept over a
$\pm 1\text{.}\text{00}\text{}$ range centered on 100 MHz, what is the range of wavelengths broadcast?
(a) What is the frequency of the 193-nm ultraviolet radiation used in laser eye surgery? (b) Assuming the accuracy with which this EM radiation can ablate the cornea is directly proportional to wavelength, how much more accurate can this UV be than the shortest visible wavelength of light?
TV-reception antennas for VHF are constructed with cross wires supported at their centers, as shown in
[link] . The ideal length for the cross wires is one-half the wavelength to be received, with the more expensive antennas having one for each channel. Suppose you measure the lengths of the wires for particular channels and find them to be 1.94 and 0.753 m long, respectively. What are the frequencies for these channels?
Conversations with astronauts on lunar walks had an echo that was used to estimate the distance to the Moon. The sound spoken by the person on Earth was transformed into a radio signal sent to the Moon, and transformed back into sound on a speaker inside the astronaut’s space suit. This sound was picked up by the microphone in the space suit (intended for the astronaut’s voice) and sent back to Earth as a radio echo of sorts. If the round-trip time was 2.60 s, what was the approximate distance to the Moon, neglecting any delays in the electronics?
Lunar astronauts placed a reflector on the Moon’s surface, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. (a) To what accuracy in meters can the distance to the Moon be determined, if this time can be measured to 0.100 ns? (b) What percent accuracy is this, given the average distance to the Moon is
$3\text{.}\text{84}\times {\text{10}}^{8}\phantom{\rule{0.25em}{0ex}}\text{m}$ ?
Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away is the planet Venus if the echo time is 1000 s? (b) What is the echo time for a car 75.0 m from a Highway Police radar unit? (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 10.0 m?
(a) Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm. (b) Compare this with the ratio of highest to lowest frequencies the ear can hear.
(a) Calculate the rate in watts at which heat transfer through radiation occurs (almost entirely in the infrared) from
$1\text{.}0\phantom{\rule{0.25em}{0ex}}{\text{m}}^{2}$ of the Earth’s surface at night. Assume the emissivity is 0.90, the temperature of the Earth is
$\text{15\xba}\text{C}$ , and that of outer space is 2.7 K. (b) Compare the intensity of this radiation with that coming to the Earth from the Sun during the day, which averages about
$\text{800}\phantom{\rule{0.25em}{0ex}}{\text{W/m}}^{2}$ , only half of which is absorbed. (c) What is the maximum magnetic field strength in the outgoing radiation, assuming it is a continuous wave?
Find the following for path D in [link] : (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.
A bottle full of water weighs 45g when full of mercury,it weighs 360g.if the empty bottle weighs 20g.calculate the relative density of mercury and the density of mercury....pls I need help
well You know the density of water is 1000kg/m^3.And formula for density is
density=mass/volume
Then we must calculate volume of bottle and mass of mercury:
Volume of bottle is (45-20)/1000000=1/40000
mass of mercury is:(360-20)/1000 kg
density of mercury:(340/1000):1/50000=(340•40000):1000=13600
Sobirjon
the latter is true
Sobirjon
100g of water is mixed with 60g of a liquid of relative density 1.2.assuming no changes in volume occurred,find the average relative density of the mixture...take density of water as 1g/cm3 and density of liquid 1.2g/cm3
Lila
plz hu can explain Heisenberg's uncertainty principle
how to solve this... a car is heading north then smoothly made a westward turn during the travel the speed of the car remains constant at 1.5km/h what is the acceleration of the car? the total travel time of the car as it smoothly changed its direction is 15 minutes
Vann
i think the acceleration is 0 since the car does not change its speed unless there are other conditions
Ben
yes I have to agree, the key phrase is, "the speed of the car remains constant...," all other information is not needed to conclude that acceleration remains at 0 during the entire time
Luis
who can help me with a relative density question
Lila
1cm3 sample of tin lead alloy has mass 8.5g.the relative density of tin is 7.3 and that of lead is 11.3.calculate the percentage by weight of tin in the alloy. assuming that there is no change of volume when the metals formed the alloy
Lila
morning, what will happen to the volume of an ice block when heat is added from -200°c to 0°c... Will it volume increase or decrease?
I think it is neither decreases nor increases ,it remains in the same volume because of its crystal structure
Sobirjon
100g of water is mixed with 60g of a liquid of relative density 1.2.assuming no changes in volume occurred,find the average relative density of the mixture. take density of water as 1g/cm3 and density of liquid as 1.2g/cm3
Lila
Sorry what does it means"no changes in volume occured"?
Sobirjon
volume can be the amount of space occupied by an object. But when an object does not change in shape it will still occupy the same space. Thats why the volume will still remain the same
Ben
Most soilds expand when heated but if it changes state at 0C it will have less volume. Ice floats because it is less dense ie a larger mass per unit volume.
u are all wlc just ask your question anybody. can answer
Ajayi
good morning ppl
ABDUL
If someone has not studied Mathematics enough yet, should theu study it first then study Phusics or Study Basics of Physics whilst srudying Math as well?
whether u studied maths or not, it is advisable to start from d basics cuz it is essential to know dem
Nuru
yea you are right
Badmus
wow, you got this w/o knowing math
Thomas
I guess that's it
Thomas
later people
Thomas
mathematics is everywhere
Anand
thanks but dat doesn't mean it is good without maths @Riaz....... Maths is essential in sciences particularly wen it comes to PHYSICS but PHYSICS must be started from the basic which may also help in ur mathematical ability
Nuru
A hydrometer of mass 0.15kg and uniform cross sectional area of 0.0025m2 displaced in water of density 1000kg/m3.what depth will the hydrometer sink
Lila
16.66 meters?
Darshik
16.71m2
aways
,i have a question of let me give answer
aways
the mass is stretched a distance of 8cm and held
what is the potential energy?
quick answer
aways
oscillation is a to and fro movement, it can also be referred to as vibration. e.g loaded string, loaded test tube or an hinged door