<< Chapter < Page Chapter >> Page >
  • Calculate the emf induced in a generator.
  • Calculate the peak emf which can be induced in a particular generator system.

Electric generators induce an emf by rotating a coil in a magnetic field, as briefly discussed in Induced Emf and Magnetic Flux . We will now explore generators in more detail. Consider the following example.

Calculating the emf induced in a generator coil

The generator coil shown in [link] is rotated through one-fourth of a revolution (from θ = to θ = 90º ) in 15.0 ms. The 200-turn circular coil has a 5.00 cm radius and is in a uniform 1.25 T magnetic field. What is the average emf induced?

The figure shows a schematic diagram of an electric generator. It consists of a rotating rectangular coil placed between the two poles of a permanent magnet shown as two rectangular blocks curved on side facing the coil. The magnetic field B is shown pointing from the North to the South Pole. The two ends of this coil are connected to the two small rings. The two conducting carbon brushes are kept pressed separately on both the rings. The coil is attached to an axle with a handle at the other end. Outer ends of the two brushes are connected to the galvanometer. The axle is mechanically rotated from outside by an angle of ninety degree that is a one fourth revolution, to rotate the coil inside the magnetic field. A current is shown to flow in the coil in clockwise direction and the galvanometer shows a deflection to left.
When this generator coil is rotated through one-fourth of a revolution, the magnetic flux Φ changes from its maximum to zero, inducing an emf.

Strategy

We use Faraday’s law of induction to find the average emf induced over a time Δ t size 12{Δt} {} :

emf = N Δ Φ Δ t . size 12{"emf"= - N { {ΔΦ} over {Δt} } } {}

We know that N = 200 size 12{N="200"} {} and Δ t = 15 . 0 ms size 12{Δt="15" "." 0`"ms"} {} , and so we must determine the change in flux Δ Φ size 12{ΔΦ} {} to find emf.

Solution

Since the area of the loop and the magnetic field strength are constant, we see that

Δ Φ = Δ ( BA cos θ ) = AB Δ ( cos θ ) . size 12{ΔΦ=Δ \( ital "BA""cos"θ \) = ital "AB"Δ \( "cos"θ \) } {}

Now, Δ ( cos θ ) = 1 . 0 size 12{Δ \( "cos"θ \) = - 1 "." 0} {} , since it was given that θ goes from to 90º . Thus Δ Φ = AB size 12{ΔΦ= - ital "AB"} {} , and

emf = N AB Δ t . size 12{"emf"=N { { ital "AB"} over {Δt} } } {}

The area of the loop is A = πr 2 = ( 3 . 14 . . . ) ( 0 . 0500 m ) 2 = 7 . 85 × 10 3 m 2 size 12{A=πr rSup { size 8{2} } = \( 3 "." "14" "." "." "." \) \( 0 "." "0500"`m \) rSup { size 8{2} } =7 "." "85" times "10" rSup { size 8{ - 3} } `m rSup { size 8{2} } } {} . Entering this value gives

emf = 200 ( 7 . 85 × 10 3 m 2 ) ( 1 . 25 T ) 15 . 0 × 10 3 s = 131 V. size 12{"emf"="200" { { \( 7 "." "85" times "10" rSup { size 8{ - 3} } " m" rSup { size 8{2} } \) \( 1 "." "25"" T" \) } over {"15" "." 0 times "10" rSup { size 8{ - 3} } " s"} } ="131"" V"} {}

Discussion

This is a practical average value, similar to the 120 V used in household power.

Got questions? Get instant answers now!

The emf calculated in [link] is the average over one-fourth of a revolution. What is the emf at any given instant? It varies with the angle between the magnetic field and a perpendicular to the coil. We can get an expression for emf as a function of time by considering the motional emf on a rotating rectangular coil of width w size 12{w} {} and height size 12{l} {} in a uniform magnetic field, as illustrated in [link] .

The figure shows a schematic diagram of an electric generator with a single rectangular coil. The rotating rectangular coil is placed between the two poles of a permanent magnet shown as two rectangular blocks curved on side facing the coil. The magnetic field B is shown pointing from the North to the South Pole. The North Pole is on the left and the South Pole is to the right and hence the direction of field is from left to right. The angular velocity of the coil is given as omega. The velocity vector v of the coil makes an angle theta with the direction of field.
A generator with a single rectangular coil rotated at constant angular velocity in a uniform magnetic field produces an emf that varies sinusoidally in time. Note the generator is similar to a motor, except the shaft is rotated to produce a current rather than the other way around.

Charges in the wires of the loop experience the magnetic force, because they are moving in a magnetic field. Charges in the vertical wires experience forces parallel to the wire, causing currents. But those in the top and bottom segments feel a force perpendicular to the wire, which does not cause a current. We can thus find the induced emf by considering only the side wires. Motional emf is given to be emf = Bℓv size 12{"emf"=Bℓv} {} , where the velocity v is perpendicular to the magnetic field B size 12{B} {} . Here the velocity is at an angle θ size 12{θ} {} with B size 12{B} {} , so that its component perpendicular to B size 12{B} {} is v sin θ size 12{v"sin"θ} {} (see [link] ). Thus in this case the emf induced on each side is emf = Bℓv sin θ size 12{"emf"=Bℓv"sin"θ} {} , and they are in the same direction. The total emf around the loop is then

emf = 2 Bℓv sin θ . size 12{"emf"=2Bℓv"sin"θ} {}

This expression is valid, but it does not give emf as a function of time. To find the time dependence of emf, we assume the coil rotates at a constant angular velocity ω size 12{ω} {} . The angle θ size 12{θ} {} is related to angular velocity by θ = ωt size 12{θ=ωt} {} , so that

emf = 2 Bℓv sin ωt . size 12{"emf"=Bℓv"sin"ωt} {}

Now, linear velocity v is related to angular velocity ω by v = size 12{v=rω} {} . Here r = w / 2 size 12{r=w/2} {} , so that v = ( w / 2 ) ω size 12{v= \( w/2 \) ω} {} , and

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask