<< Chapter < Page Chapter >> Page >
  • Describe the effects of a magnetic force on a current-carrying conductor.
  • Calculate the magnetic force on a current-carrying conductor.

Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to the conductor itself.

A diagram showing a circuit with current I running through it. One section of the wire passes between the north and south poles of a magnet with a diameter l. Magnetic field B is oriented toward the right, from the north to the south pole of the magnet, across the wire. The current runs out of the page. The force on the wire is directed up. An illustration of the right hand rule 1 shows the thumb pointing out of the page in the direction of the current, the fingers pointing right in the direction of B, and the F vector pointing up and away from the palm.
The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving charges.

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity v d is given by F = qv d B sin θ . Taking B size 12{B} {} to be uniform over a length of wire l and zero elsewhere, the total magnetic force on the wire is then F = ( qv d B sin θ ) ( N ) size 12{F= \( ital "qv" rSub { size 8{d} } B"sin"θ \) \( N \) } {} , where N size 12{N} {} is the number of charge carriers in the section of wire of length l size 12{l} {} . Now, N = nV size 12{N= ital "nV"} {} , where n size 12{n} {} is the number of charge carriers per unit volume and V size 12{V} {} is the volume of wire in the field. Noting that V = Al size 12{V= ital "Al"} {} , where A size 12{A} {} is the cross-sectional area of the wire, then the force on the wire is F = ( qv d B sin θ ) ( nAl ) . Gathering terms,

F = ( nqAv d ) lB sin θ . size 12{F= \( ital "nqAv" rSub { size 8{d} } \) ital "lB""sin"θ} {}

Because nqAv d = I size 12{ ital "nqAv" rSub { size 8{d} } =I} {} (see Current ),

F = IlB sin θ size 12{F= ital "IlB""sin"θ} {}

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B , as shown in [link] . If we divide both sides of this expression by l , we find that the magnetic force per unit length of wire in a uniform field is F l = IB sin θ size 12{ { {F} over {l} } = ital "IB""sin"θ} {} . The direction of this force is given by RHR-1, with the thumb in the direction of the current I size 12{I} {} . Then, with the fingers in the direction of B size 12{B} {} , a perpendicular to the palm points in the direction of F size 12{F} {} , as in [link] .

Illustration of the right hand rule 1 showing the thumb pointing right in the direction of current I, the fingers pointing into the page with magnetic field B, and the force directed up, away from the palm.
The force on a current-carrying wire in a magnetic field is F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} . Its direction is given by RHR-1.

Calculating magnetic force on a current-carrying wire: a strong magnetic field

Calculate the force on the wire shown in [link] , given B = 1 . 50 T size 12{B=1 "." "50"" T"} {} , l = 5 . 00 cm size 12{l=5 "." "00"" cm"} {} , and I = 20 . 0 A size 12{I="20" "." 0 A} {} .

Strategy

The force can be found with the given information by using F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} and noting that the angle θ size 12{θ} {} between I size 12{I} {} and B size 12{B} {} is 90º , so that sin θ = 1 .

Solution

Entering the given values into F = IlB sin θ size 12{F= ital "IlB""sin"θ} {} yields

F = IlB sin θ = 20 .0 A 0 . 0500 m 1 . 50 T 1 . size 12{F= ital "IlB""sin"θ= left ("20" "." 0" A" right ) left (0 "." "0500"" m" right ) left (1 "." "50"" T" right ) left (1 right )} {}

The units for tesla are 1 T = N A m size 12{"1 T"= { {N} over {A cdot m} } } {} ; thus,

F = 1 . 50 N. size 12{F=1 "." "50"" N"} {}

Discussion

This large magnetic field creates a significant force on a small length of wire.

Got questions? Get instant answers now!

Magnetic force on current-carrying conductors is used to convert electric energy to work. (Motors are a prime example—they employ loops of wire and are considered in the next section.) Magnetohydrodynamics (MHD) is the technical name given to a clever application where magnetic force pumps fluids without moving mechanical parts. (See [link] .)

Diagram showing a cylinder of fluid of diameter l placed between the north and south poles of a magnet. The north pole is to the left. The south pole is to the right. The cylinder is oriented out of the page. The magnetic field is oriented toward the right, from the north to the south pole, and across the cylinder of fluid. A current-carrying wire runs through the fluid cylinder with current I oriented downward, perpendicular to the cylinder. Negative charges within the fluid have a velocity vector pointing up. Positive charges within the fluid have a velocity vector pointing downward. The force on the fluid is out of the page. An illustration of the right hand rule 1 shows the thumb pointing downward with the current, the fingers pointing to the right with B, and force F oriented out of the page, away from the palm.
Magnetohydrodynamics. The magnetic force on the current passed through this fluid can be used as a nonmechanical pump.

A strong magnetic field is applied across a tube and a current is passed through the fluid at right angles to the field, resulting in a force on the fluid parallel to the tube axis as shown. The absence of moving parts makes this attractive for moving a hot, chemically active substance, such as the liquid sodium employed in some nuclear reactors. Experimental artificial hearts are testing with this technique for pumping blood, perhaps circumventing the adverse effects of mechanical pumps. (Cell membranes, however, are affected by the large fields needed in MHD, delaying its practical application in humans.) MHD propulsion for nuclear submarines has been proposed, because it could be considerably quieter than conventional propeller drives. The deterrent value of nuclear submarines is based on their ability to hide and survive a first or second nuclear strike. As we slowly disassemble our nuclear weapons arsenals, the submarine branch will be the last to be decommissioned because of this ability (See [link] .) Existing MHD drives are heavy and inefficient—much development work is needed.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask