<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define ferromagnet.
  • Describe the role of magnetic domains in magnetization.
  • Explain the significance of the Curie temperature.
  • Describe the relationship between electricity and magnetism.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 2.D.3.1 The student is able to describe the orientation of a magnetic dipole placed in a magnetic field in general and the particular cases of a compass in the magnetic field of the Earth and iron filings surrounding a bar magnet. (S.P. 1.2)
  • 2.D.4.1 The student is able to use the representation of magnetic domains to qualitatively analyze the magnetic behavior of a bar magnet composed of ferromagnetic material. (S.P. 1.4)
  • 4.E.1.1 The student is able to use representations and models to qualitatively describe the magnetic properties of some materials that can be affected by magnetic properties of other objects in the system. (S.P. 1.1, 1.4, 2.2)

Ferromagnets

Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called ferromagnetic    , after the Latin word for iron, ferrum . A group of materials made from the alloys of the rare earth elements are also used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which are detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is attracted to magnets), they can also be magnetized    themselves—that is, they can be induced to be magnetic or made into permanent magnets.

An unmagnetized piece of iron is turned into a permanent magnet using heat and another magnet.
An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron becomes a permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original magnet, and its north pole is adjacent to the south pole of the original magnet. Note that there are attractive forces between the magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material with unlike poles closest, as in [link] . (This results in the attraction of the previously unmagnetized material to the magnet.) What happens on a microscopic scale is illustrated in [link] . The regions within the material called domains    act like small bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains may grow to millimeter size, aligning themselves as shown in [link] (b). This induced magnetization can be made permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.

Three schematic diagrams of a piece of iron showing magnetic domains. In Figure a, there are many domains (tiny magnetic regions, each with a north pole and a south pole). Each domain has a slightly different orientation. In Figure b, the domains are larger. Most of the domains are oriented in roughly the same direction. In Figure c, there is a single domain for the entire piece of iron. There is a north pole and a south pole.
(a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When magnetized by an external field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within domains; each atom acts like a tiny bar magnet.

Questions & Answers

how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
displacement in easy way.
Mubashir Reply
what is the Amount
Yasmin Reply
Of what? A bit of something
Antonio
binding energy per nucleon
Poonam Reply
why God created humanity
Manuel Reply
Because HE needs someone to dominate the earth (Gen. 1:26)
Olorunfemi
Is the object in a conductor or an insulator? Justify your answer. whats the answer to this question? pls need help figure is given above
Jun Reply
how do i calculate the pressure on the base of a deposit if the deposit is moving with a linear aceleration
ximena Reply
why electromagnetic induction is not used in room heater ?
Gopi Reply
What is position?
Amoah Reply
What is law of gravition
sushil Reply
what is magnetism
Sandeep Reply
what is charging by induction
Sandeep Reply
what is electric field lines
Sandeep Reply
law of gravitation
Rakesh Reply
Suppose a 0.250-kg ball is thrown at 15.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in [link] . (b) What is his angular velocity if each arm is 5.00 kg? You may treat the ball as a point mass and treat the person's arms as uniform rods (each has a length of 0.900 m) and the rest of his body as a uniform cylinder of radius 0.180 m. Neglect the effect of the ball on his center of mass so that his center of mass remains in his geometrical center.
Varun Reply
Practice Key Terms 7

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask