<< Chapter < Page Chapter >> Page >

[link] is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script E in the figure) and internal resistance r size 12{r} {} are in series. The smaller the internal resistance for a given emf, the more current and the more power the source can supply.

This diagram shows a battery with a schematic indicating the e m f, represented by script E, and the internal resistance r of the battery. The voltage output of the battery is measured between the input and output terminals and is equal to the e m f minus the product of the current and the internal resistance.
Any voltage source (in this case, a carbon-zinc dry cell) has an emf related to its source of potential difference, and an internal resistance r size 12{r} {} related to its construction. (Note that the script E stands for emf.). Also shown are the output terminals across which the terminal voltage V size 12{V} {} is measured. Since V = emf Ir size 12{V="emf" - ital "Ir"} {} , terminal voltage equals emf only if there is no current flowing.

The internal resistance r size 12{r} {} can behave in complex ways. As noted, r size 12{r} {} increases as a battery is depleted. But internal resistance may also depend on the magnitude and direction of the current through a voltage source, its temperature, and even its history. The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how many times and how deeply they have been depleted.

Things great and small: the submicroscopic origin of battery potential

Various types of batteries are available, with emfs determined by the combination of chemicals involved. We can view this as a molecular reaction (what much of chemistry is about) that separates charge.

The lead-acid battery used in cars and other vehicles is one of the most common types. A single cell (one of six) of this battery is seen in [link] . The cathode (positive) terminal of the cell is connected to a lead oxide plate, while the anode (negative) terminal is connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the system.

A simplified view of a battery shows a rectangular container of sulfuric acid with two thin upright metal plates immersed in it, one made of lead and the other made of lead oxide. Each plate projects above the liquid line, providing a positive or negative terminal above the battery. The positive terminal is labeled as the cathode, and the negative terminal is labeled as the anode.
Artist’s conception of a lead-acid cell. Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge as well as participating in the chemical reaction.

The details of the chemical reaction are left to the reader to pursue in a chemistry text, but their results at the molecular level help explain the potential created by the battery. [link] shows the result of a single chemical reaction. Two electrons are placed on the anode, making it negative, provided that the cathode supplied two electrons. This leaves the cathode positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a chemical reaction.

Note that the reaction will not take place unless there is a complete circuit to allow two electrons to be supplied to the cathode. Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the cathode. Note also that since the chemical reactions involve substances with resistance, it is not possible to create the emf without an internal resistance.

The diagram shows a simplified view of a battery depicting a rectangular container containing two thin upright metal plates immersed in a liquid. An enlarged view of the metal plates is also shown. One plate has positive charges on it shown as small spheres enclosing a positive sign. The other plate has negative charge on it shown as small spheres enclosing an electron. The electrons are shown to move from the positive plate to the negative plate using arrows through a molecular reaction in the liquid.
Artist’s conception of two electrons being forced onto the anode of a cell and two electrons being removed from the cathode of the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a closed circuit to proceed, since the two electrons must be supplied to the cathode.

Questions & Answers

what is thermo electric thermometer
Undie Reply
Who can help me with dynamics?
ivan Reply
radiation amuses mee....
pau Reply
can someone enumerate the First and second law of thermodynamics
oladele Reply
Abdul Reply
radiation of phones kept amazing me
Okugbesan Reply
Adeleke Reply
I understand light is a range of wavelenghts from em spectrum, but Where do photons come from in particular, how it is emitted from the sun?
Ian Reply
pierre Reply
please what is the formula for calculating Newton second law of motion?
Ogodo Reply
what is emotion
Lilian Reply
properties of transverse waves
Abiodun Reply
is visible light electromagnetic wave?
akash Reply
Visible light is a range of wavelengths within the electro magnetic spectrum.
It is electro magnetic radiation from the sun.
please what is the formula for coefficient of kinetic friction
Seyi Reply
What is work
Sunbomustaphar Reply
Practice Key Terms 4

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?