<< Chapter < Page Chapter >> Page >

Distance in the interval t = 0 to 1 s is :

s 1 = 1 - 0 = 1 m s 2 = 4 - 0 = 4 m

Total distance is 1 + 4 = 5 m.

6: Velocity is zero, when t = 1 s. In this period, displacement is 1 m.

7: In order to determine the nature of force on the particle, we first determine the acceleration as :

a = đ v đ t = đ đ t ( 2 t - 2 ) = 2 m / s 2

Acceleration of the motion is constant, independent of time. Hence, force on the particle is also constant during the motion.

Equation of motion for one dimensional motion with constant acceleration

The equation of motions in one dimension for constant acceleration is obtained from the equations of motion established for the general case i.e. for the three dimensional motion. In one dimension, the equation of motion is simplified ( r is replaced by x or y or z with corresponding unit vector). The three basic equations of motions are (say in x - direction) :

1: v = u + a t 2: v avg = ( u + v ) 2 3: Δ x i = u t + 1 2 a t 2

Significantly, we can treat vector equivalently as scalars with appropriate sign. Following is the construct used for this purpose :

    Sign convention

  • Assign an axis along the motion. Treat direction of axis as positive.
  • Assign the origin with the start of motion or start of observation. It is, however, a matter of convenience and is not a requirement of the construct.
  • Use all quantities describing motion in the direction of axis as positive.
  • Use all quantities describing motion in the opposite direction of axis as negative.

Once, we follow the rules as above, we can treat equations of motion as scalar equations as :

1: v = u + a t 2: v avg = ( u + v ) 2 3: Δ x = u t + 1 2 a t 2

Constant acceleration

Problem : A car moving with constant acceleration covers two successive kilometers in 20 s and 30 s respectively. Find the acceleration of the car.

Solution : Let "u" and "a" be the initial velocity and acceleration of the car. Applying third equation of motion for first kilometer, we have :

1000 = u x 20 + 1 2 a 20 2 = 20 u + 200 a 100 = 2 u + 20 a

At the end of second kilometer, total displacement is 2 kilometer (=2000 m) and total time is 20 + 30 = 50 s. Again applying third equation of motion,

2000 = u x 50 + 1 2 a 50 2 = 50 u + 2500 a 200 = 5 u + 125 a

Solving two equations,

a = - 2.86 m / s 2

Note that acceleration is negative to the positive direction (direction of velocity) and as such it is termed “deceleration”. This interpretation is valid as we observe that the car covers second kilometer in longer time that for the first kilometer, which means that the car has slowed down.

It is important to emphasize here that mere negative value of acceleration does not mean it to be deceleration. The deciding criterion for deceleration is that acceleration should be opposite to the direction of velocity.

Got questions? Get instant answers now!

Motion under gravity

We have observed that when a feather and an iron ball are released from a height, they reach earth surface with different velocity and at different times. These objects are under the action of different forces like gravity, friction, wind and buoyancy force. In case forces other than gravity are absent like in vacuum, the bodies are only acted by the gravitational pull towards earth. In such situation, acceleration due to gravity, denoted by g, is the only acceleration.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask