<< Chapter < Page Chapter >> Page >

Now, it is clear from the definition of binding energy itself that the initial kinetic energy of the projection should be equal to the binding energy of the body in order that it moves out of the gravitational influence. Now, the body to escape is at rest before being initiated in projection. Thus, its binding energy is equal to potential energy only.

Therefore, kinetic energy of the projection should be equal to the magnitude of potential energy on the surface of Earth,

1 2 m v e 2 = G M m R

where “ v e ” is the escape velocity. Note that we have used “R” to denote Earth’s radius, which is the distance between the center of Earth and projectile on the surface. Solving above equation for escape velocity, we have :

v e = 2 G M R

2. conservation of mechanical energy :

The act of putting a body into interstellar space is equivalent to taking the body to infinity i.e. at a very large distance. Infinity, as we know, has been used as zero potential energy reference. The reference is also said to represent zero kinetic energy.

From conservation of mechanical energy, it follows that total mechanical energy on Earth’s should be equal to mechanical energy at infinity i.e. should be equal to zero. But, we know that potential energy at the surface is given by :

U = - G M m R

On the other hand, for body to escape gravitational field,

K + U = 0

Therefore, kinetic energy required by the projectile to escape is :

K = - U = G M m R

Now, putting expression for kinetic energy and proceeding as in the earlier derivation :

v e = 2 G M R

3: final velocity is not zero :

We again use conservation of mechanical energy, but with a difference. Let us consider that projected body of mass, “m” has initial velocity “u” and an intermediate velocity, “v”, at a height “h”. The idea here is to find condition for which intermediate velocity ,”v”, never becomes zero and hence escape Earth’s influence. Applying conservation of mechanical energy, we have :

E i = E f

K i + U i = K f + U f

1 2 m u 2 G M m R = 1 2 m v 2 G M m R + h

Rearranging,

1 2 m v 2 = 1 2 m u 2 G M m R + G M m R + h

In order that, final velocity (“v”) is positive, the expressions on the right should evaluate to a positive value. For this,

1 2 m u 2 G M m R

For the limiting case, u = v e ,

v e = 2 G M R

Interpreting escape velocity

These three approaches to determine escape velocity illustrates how we can analyze a given motion in gravitational field in many different ways. We should be aware that we have determined the minimum velocity required to escape Earth’s gravity. It is so because we have used the expression of potential energy, which is defined for work by external force slowly.

However, it is found that the velocity so calculated is good enough for escaping gravitational field. Once projected body achieves considerable height, the gravitational attraction due to other celestial bodies also facilitates escape from Earth's gravity.

Further, we can write the expression of escape velocity in terms of gravitational acceleration (consider g = g 0 ),

g = G M r 2

G M r = g r

Putting in the expression of escape velocity, we have :

v e = 2 G M R = 2 g R

Escape velocity of earth

In the case of Earth,

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask