<< Chapter < Page Chapter >> Page >

a = Δ v Δ t

The ratio denotes average acceleration, when the measurement involves finite time interval; whereas the ratio denotes instantaneous acceleration for infinitesimally small time interval, Δ t 0 .

We know that velocity itself has the dimension of length divided by time; the dimension of the acceleration, which is equal to the change in velocity divided by time, involves division of length by squared time and hence its dimensional formula is L T - 2 . The SI unit of acceleration is meter/ second 2 i.e. m/ s 2 .

Average acceleration

Average acceleration gives the overall acceleration over a finite interval of time. The magnitude of the average acceleration tells us the rapidity with which the velocity of the object changes in a given time interval.

a avg = Δ v Δ t

Average acceleration

The direction of acceleration is along the vector Δ v = v 2 - v 1 and not required to be in the direction of either of the velocities. If the initial velocity is zero, then Δ v = v 2 = v and average acceleration is in the direction of final velocity.

Difference of two vectors v 2 - v 1 can be drawn conveniently following certain convention (We can take a mental note of the procedure for future use). We draw a straight line, starting from the arrow tip (i.e. head) of the vector being subtracted v 1 to the arrow tip (i.e. head) of the vector from which subtraction is to be made v 2 . Then, from the triangle law of vector addition, v 1 + Δ v = v 2 Δ v = v 2 - v 1

Instantaneous acceleration

Instantaneous acceleration, as the name suggests, is the acceleration at a given instant, which is obtained by evaluating the limit of the average acceleration as Δ t 0 .

Instantaneous acceleration

a = lim Δ t 0 Δ v Δ t = đ v đ t

As the point B approaches towards A, the limit of the ratio evaluates to a finite value. Note that the ratio evaluates not along the tangent to the curve as in the case of velocity, but along the direction shown by the red arrow. This is a significant result as it tells us that direction of acceleration is independent of the direction of velocity.

Instantaneous acceleration
Instantaneous acceleration is equal to the first derivative of velocity with respect to time.

It is evident that a body might undergo different phases of acceleration during the motion, depending on the external forces acting on the body. It means that accelerations in a given time interval may vary. As such, the average and the instantaneous accelerations need not be equal.

A general reference to the term acceleration ( a ) refers to the instantaneous acceleration – not average acceleration. The absolute value of acceleration gives the magnitude of acceleration :

| a | = a

Acceleration in terms of position vector

Velocity is defined as derivative of position vector :

v = đ r đ t

Combining this expression of velocity into the expression for acceleration, we obtain,

a = đ v đ t = đ 2 r đ t 2

Acceleration
Acceleration of a point body is equal to the second derivative of position vector with respect to time.

Now, position vector is represented in terms of components as :

r = x i + y j + z k

Substituting in the expression of acceleration, we have :

a = đ 2 x đ t 2 i + đ 2 y đ t 2 j + đ 2 z đ t 2 k a = a x i + a y j + a z k

Acceleration

Problem : The position of a particle, in meters, moving in space is described by following functions in time.

x = 2 t 2 - 2 t + 3 ; y = - 4 t and z = 5

Find accelerations of the particle at t = 1 and 4 seconds from the start of motion.

Solution : Here scalar components of accelerations in x,y and z directions are given as :

a x = đ 2 x đ t 2 = đ 2 đ t 2 ( 2 t 2 - 2 t + 3 ) = 4 a y = đ 2 y đ t 2 = đ 2 đ t 2 ( - 4 t ) = 0 a z = đ 2 z đ t 2 = đ 2 đ t 2 ( 5 ) = 0

Thus, acceleration of the particle is :

a = 4 i

The acceleration of the particle is constant and is along x-direction. As acceleration is not a function of time, the accelerations at t = 1 and 4 seconds are same being equal to 4 m / s 2 .

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask