<< Chapter < Page Chapter >> Page >

W E + W F = Δ K + Δ U

We are required to find minimum force. We need to understand the implication of this phrase. It is clear that we can apply external force in such a manner that block of “2 kg” acquires kinetic energy by the time block of “1 kg” is initiated in motion. Alternatively as a base case, we can apply external force gradually and slowly in increasing magnitude till the block of “1 kg” is initiated in motion. In this case, the block of “2 kg” does not acquire kinetic energy. This mode of application of external force represents the situation when minimum external force will be required to initiate block of “1 kg”. Hence,

Δ K = 0

Motion of block is constrained in horizontal direction. There is no change of vertical elevation. Hence, there is no change in gravitational potential energy. However, spring is stretched from its neutral state. As a consequence, there is change in elastic potential energy of the spring. Let “x” be the extension in the spring by the time block of “1 kg” is initiated in motion. Then, the total change in potential energy is :

Δ U = 1 2 k x 2

The work by friction is done only on the right block of “2 kg” :

W F = - μ m 2 g x

On the other hand, the work by external force is :

W E = F x

Putting all these values in the equation of conservation of energy :

F x μ m 2 g x = 1 2 k x 2

F μ m 2 g = 1 2 k x

Clearly, we can not solve this equation as there are two unknowns, “F” and “x”. We, therefore, make use of the fact that spring force on the block of mass “1 kg” is equal to maximum static friction,

Forces on the block

The spring force is equal to maximum static friction.

k x = μ m 1 g

Combining two equations, we have :

F μ m 2 g = 1 2 μ m 1 g

F = μ g m 1 + m 2 2 = 0.5 X 10 1 + 2 2 X 10 = 10 N

It is interesting to note that force required to initiate left block is independent of spring constant.

Mechanical process without external force on the system

Since no external force operates on the system, there is no work by external force. The system under consideration is, therefore, an isolated system. The form of conservation law for general mechanical process is further reduced as :

W F = Δ K + Δ U

In words, we can put the conservation of energy for mechanical process under given condition as :

“Work by friction within an isolated system is equal to the change in potential and kinetic energy of the system.”

Example

Problem 2: In the arrangement shown, the block of mass 10 kg descends through a height of 1 m after being released. The coefficient of friction between block and the horizontal table is 0.3, whereas pulley is friction-less. Considering string and pulley to be “mass-less”, find the speed of the blocks.

Block pulley system

Blocks move by 1 m.

Solution : Here, friction is present as internal force to the system. Hence, we use the form of conservation law as :

W F = Δ K + Δ U

Let us denote 6 kg and 10 kg blocks with subscript “1” and “2”. There is no change of height for the block on the table. Only change in gravitational potential energy is due to change in the height of the block hanging on the other end of the string. Thus, change in potential energy is :

Δ U = m 1 g h + m 2 g h = 0 10 x 10 x 1 = - 100 J

Two blocks are constrained by a taut string. It means that both blocks move with same speed. Let the speed of the blocks after traveling “1 m” be "v". Now, initial kinetic energy of the system is zero. Therefore, the change in kinetic energy is given by :

Δ K = 1 2 m 1 v 2 + 1 2 m 2 v 2

Δ K = 1 2 X 6 X v 2 + 1 2 X 10 X v 2

Δ K = 8 v 2

Friction works only on the block lying on the table. Here, work by friction is given as :

W F = - μ N x = - μ m 1 g x = - 0.3 X 6 X 10 X 1 = - 18 J

Putting in the equation of conservation of energy,

- 18 = 8 v 2 100

v 2 = 82 8

v = 3.2 m / s

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask